Random Fields on the Sphere : Representation, Limit Theorems and Cosmological Applications.

Reviews recent developments in the analysis of isotropic spherical random fields, with a view towards applications in cosmology.

Saved in:
Bibliographic Details
Online Access: Full Text (via ProQuest)
Main Author: Marinucci, Domenico
Other Authors: Peccati, Giovanni, 1975-
Format: eBook
Language:English
Published: Cambridge : Cambridge University Press, 2011.
Series:London Mathematical Society Lecture Note Series, 389.
Subjects:

MARC

LEADER 00000cam a2200000Mi 4500
001 b10187639
003 CoU
005 20190503025230.1
006 m o d
007 cr |||||||||||
008 111226s2011 enk ob 001 0 eng d
019 |a 759007197  |a 761284104  |a 768771958  |a 816866945  |a 819630810  |a 853654206 
020 |a 9781139117487 
020 |a 1139117483 
020 |a 1283296179 
020 |a 9781283296175 
020 |a 9780511751677  |q (electronic book) 
020 |a 0511751672  |q (electronic book) 
020 |a 9781139128148  |q (electronic bk.) 
020 |a 1139128140  |q (electronic bk.) 
020 |a 1139115316  |q (electronic bk.) 
020 |a 9781139115315  |q (electronic bk.) 
020 |z 0521175615 
020 |z 9780521175616 
035 |a (OCoLC)ebq769341761dda 
035 |a (OCoLC)769341761  |z (OCoLC)759007197  |z (OCoLC)761284104  |z (OCoLC)768771958  |z (OCoLC)816866945  |z (OCoLC)819630810  |z (OCoLC)853654206 
037 |a ebq775025dda 
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d DEBSZ  |d IDEBK  |d OL$  |d OCLCO  |d OCLCQ  |d OCLCO  |d CDX  |d OCLCF  |d N$T  |d E7B  |d YDXCP  |d UIU  |d REDDC  |d CAMBR  |d OSU  |d OCLCQ  |d UAB  |d OCLCQ  |d INT  |d AU@  |d OCLCQ 
049 |a GWRE 
050 4 |a QA406 .M37 2011 
066 |c (S 
100 1 |a Marinucci, Domenico. 
245 1 0 |a Random Fields on the Sphere :  |b Representation, Limit Theorems and Cosmological Applications. 
260 |a Cambridge :  |b Cambridge University Press,  |c 2011. 
300 |a 1 online resource (355 pages) 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
490 1 |a London Mathematical Society Lecture Note Series, 389 ;  |v v. 389. 
505 0 |6 880-01  |a Cover; Title; Copyright; Contents; Dedication; Preface; 1 Introduction; 1.1 Overview; 1.2 Cosmological motivations; 1.3 Mathematical framework; 1.4 Plan of the book; 2 Background Results in Representation Theory; 2.1 Introduction; 2.2 Preliminary remarks; 2.3 Groups: basic definitions; 2.3.1 First definitions and examples; 2.3.2 Cosets and quotients; 2.3.3 Actions; 2.4 Representations of compact groups; 2.4.1 Basic definitions; 2.4.2 Group representations and Schur Lemma; 2.4.3 Direct sum and tensor product representations; 2.4.4 Orthogonality relations; 2.5 The Peter-Weyl Theorem. 
505 8 |a 3 Representations of SO(3) and Harmonic Analysis on S23.1 Introduction; 3.2 Euler angles; 3.2.1 Euler angles for SU(2); 3.2.2 Euler angles for SO(3); 3.3 Wigner's D matrices; 3.3.1 A family of unitary representations of SU(2); 3.3.2 Expressions in terms of Euler angles and irreducibility; 3.3.3 Further properties; 3.3.4 The dual of SO(3); 3.4 Spherical harmonics and Fourier analysis on S2; 3.4.1 Spherical harmonics and Wigner's Dl matrices; 3.4.2 Some properties of spherical harmonics; 3.4.3 An alternative characterization of spherical harmonics; 3.5 The Clebsch-Gordan coefficients. 
505 8 |a 3.5.1 Clebsch-Gordan matrices3.5.2 Integrals of multiple spherical harmonics; 3.5.3 Wigner 3 j coefficients; 4 Background Results in Probability and Graphical Methods; 4.1 Introduction; 4.2 Brownian motion and stochastic calculus; 4.3 Moments, cumulants and diagram formulae; 4.4 The simplified method of moments on Wiener chaos; 4.4.1 Real kernels; 4.4.2 Further results on complex kernels; 4.5 The graphical method for Wigner coefficients; 4.5.1 From diagrams to graphs; 4.5.2 Further notation; 4.5.3 First example: sums of squares; 4.5.4 Cliques and Wigner 6 j coefficients. 
505 8 |a 4.5.5 Rule n. 1: loops are zero4.5.6 Rule n. 2: paired sums are one; 4.5.7 Rule n. 3: 2-loops can be cut, and leave a factor; 4.5.8 Rule n. 4: three-loops can be cut, and leave a clique; 5 Spectral Representations; 5.1 Introduction; 5.2 The Stochastic Peter-Weyl Theorem; 5.2.1 General statements; 5.2.2 Decompositions on the sphere; 5.3 Weakly stationary random fields in Rm; 5.4 Stationarity and weak isotropy in R3; 6 Characterizations of Isotropy; 6.1 Introduction; 6.2 First example: the cyclic group; 6.3 The spherical harmonics coefficients; 6.4 Group representations and polyspectra. 
505 8 |a 6.5 Angular polyspectra and the structure of?l1 ... ln6.5.1 Spectra of strongly isotropic fields; 6.5.2 The structure of?l1 ... ln; 6.6 Reduced polyspectra of arbitrary orders; 6.7 Some examples; 7 Limit Theorems for Gaussian Subordinated Random Fields; 7.1 Introduction; 7.2 First example: the circle; 7.3 Preliminaries on Gaussian-subordinated fields; 7.4 High-frequency CLTs; 7.4.1 Hermite subordination; 7.5 Convolutions and random walks; 7.5.1 Convolutions on?SO (3); 7.5.2 The cases q = 2 and q = 3; 7.5.3 The case of a general q: results and conjectures; 7.6 Further remarks. 
500 |a 7.6.1 Convolutions as mixed states. 
504 |a Includes bibliographical references (pages 326-337) and index. 
520 |a Reviews recent developments in the analysis of isotropic spherical random fields, with a view towards applications in cosmology. 
588 0 |a Print version record. 
650 0 |a Compact groups. 
650 0 |a Cosmology  |x Statistical methods. 
650 0 |a Random fields. 
650 0 |a Spherical harmonics. 
650 7 |a Compact groups.  |2 fast  |0 (OCoLC)fst00871287. 
650 7 |a Random fields.  |2 fast  |0 (OCoLC)fst01089800. 
650 7 |a Spherical harmonics.  |2 fast  |0 (OCoLC)fst01129683. 
700 1 |a Peccati, Giovanni,  |d 1975- 
776 0 8 |i Print version:  |a Marinucci, Domenico.  |t Random Fields on the Sphere : Representation, Limit Theorems and Cosmological Applications.  |d Cambridge : Cambridge University Press, ©2011  |z 9780521175616. 
830 0 |a London Mathematical Society Lecture Note Series, 389. 
856 4 0 |u https://ebookcentral.proquest.com/lib/ucb/detail.action?docID=775025  |z Full Text (via ProQuest) 
880 0 0 |6 505-01/(S  |g Machine generated contents note:  |g 1.  |t Introduction --  |g 1.1.  |t Overview --  |g 1.2.  |t Cosmological motivations --  |g 1.3.  |t Mathematical framework --  |g 1.4.  |t Plan of the book --  |g 2.  |t Background Results in Representation Theory --  |g 2.1.  |t Introduction --  |g 2.2.  |t Preliminary remarks --  |g 2.3.  |t Groups: basic definitions --  |g 2.4.  |t Representations of compact groups --  |g 2.5.  |t Peter-Weyl Theorem --  |g 3.  |t Representations of SO(3) and Harmonic Analysis on S2 --  |g 3.1.  |t Introduction --  |g 3.2.  |t Euler angles --  |g 3.3.  |t Wigner's D matrices --  |g 3.4.  |t Spherical harmonics and Fourier analysis on S2 --  |g 3.5.  |t Clebsch-Gordan coefficients --  |g 4.  |t Background Results in Probability and Graphical Methods --  |g 4.1.  |t Introduction --  |g 4.2.  |t Brownian motion and stochastic calculus --  |g 4.3.  |t Moments, cumulants and diagram formulae --  |g 4.4.  |t simplified method of moments on Wiener chaos --  |g 4.5.  |t graphical method for Wigner coefficients --  |g 5.  |t Spectral Representations --  |g 5.1.  |t Introduction --  |g 5.2.  |t Stochastic Peter-Weyl Theorem --  |g 5.3.  |t Weakly stationary random fields in Rm --  |g 5.4.  |t Stationarity and weak isotropy in R3 --  |g 6.  |t Characterizations of Isotropy --  |g 6.1.  |t Introduction --  |g 6.2.  |t First example: the cyclic group --  |g 6.3.  |t spherical harmonics coefficients --  |g 6.4.  |t Group representations and polyspectra --  |g 6.5.  |t Angular polyspectra and the structure of δl1 ... l1 --  |g 6.6.  |t Reduced polyspectra of arbitrary orders --  |g 6.7.  |t Some examples --  |g 7.  |t Limit Theorems for Gaussian Subordinated Random Fields --  |g 7.1.  |t Introduction --  |g 7.2.  |t First example: the circle --  |g 7.3.  |t Preliminaries on Gaussian-subordinated fields --  |g 7.4.  |t High-frequency CLTs --  |g 7.5.  |t Convolutions and random walks --  |g 7.6.  |t Further remarks --  |g 7.7.  |t Application: algebraic/exponential dualities --  |g 8.  |t Asymptotics for the Sample Power Spectrum --  |g 8.1.  |t Introduction --  |g 8.2.  |t Angular power spectrum estimation --  |g 8.3.  |t Interlude: some practical issues --  |g 8.4.  |t Asymptotics in the non-Gaussian case --  |g 8.5.  |t quadratic case --  |g 8.6.  |t Discussion --  |g 9.  |t Asymptotics for Sample Bispectra --  |g 9.1.  |t Introduction --  |g 9.2.  |t Sample bispectra --  |g 9.3.  |t central limit theorem --  |g 9.4.  |t Limit theorems under random normalizations --  |g 9.5.  |t Testing for non-Gaussianity --  |g 10.  |t Spherical Needlets and their Asymptotic Properties --  |g 10.1.  |t Introduction --  |g 10.2.  |t construction of spherical needlets --  |g 10.3.  |t Properties of spherical needlets --  |g 10.4.  |t Stochastic properties of needlet coefficients --  |g 10.5.  |t Missing observations --  |g 10.6.  |t Mexican needlets --  |g 11.  |t Needlets Estimation of Power Spectrum and Bispectrum --  |g 11.1.  |t Introduction --  |g 11.2.  |t general convergence result --  |g 11.3.  |t Estimation of the angular power spectrum --  |g 11.4.  |t functional central limit theorem --  |g 11.5.  |t central limit theorem for the needlets bispectrum --  |g 12.  |t Spin Random Fields --  |g 12.1.  |t Introduction --  |g 12.2.  |t Motivations --  |g 12.3.  |t Geometric background --  |g 12.4.  |t Spin needlets and spin random fields --  |g 12.5.  |t Spin needlets spectral estimator --  |g 12.6.  |t Detection of asymmetries --  |g 12.7.  |t Estimation with noise --  |g 13.  |t Appendix --  |g 13.1.  |t Orthogonal polynomials --  |g 13.2.  |t Spherical harmonics and their analytic properties --  |g 13.3.  |t proof of needlets' localization. 
907 |a .b101876397  |b 11-29-21  |c 09-26-18 
998 |a web  |b  - -   |c f  |d b   |e -  |f eng  |g enk  |h 0  |i 1 
915 |a M 
956 |a Ebook Central DDA 
956 |b Ebook Central DDA Titles 
999 f f |i c932334c-2a0d-5cf5-8035-5749ba83b8ea  |s 348fb30a-da25-5b14-96e1-4f4078a92cea 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA406 .M37 2011  |h Library of Congress classification  |i web  |n 1