What Does It Mean to "Understand" Concavity and Inflection Points? / Steven R. Jones.

The calculus concepts of concavity and inflection points are often given meaning through the shape or curvature of a graph. However, there appear to be deeper core ideas for these two concepts, though the research literature has yet to give explicit attention to what these core ideas might be or wha...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via ERIC)
Main Author: Jones, Steven R.
Format: eBook
Language:English
Published: [Place of publication not identified] : Distributed by ERIC Clearinghouse, 2016.
Subjects:

MARC

LEADER 00000nam a22000002u 4500
001 b10195788
003 CoU
005 20180925121334.7
006 m o d f
007 cr |||||||||||
008 161101s2016 xx |||| o ||| s eng d
035 |a (ERIC)ed583775 
035 |a (MvI) 6I000000562529 
040 |a ericd  |b eng  |c MvI  |d MvI 
099 |a ED583775 
100 1 |a Jones, Steven R. 
245 1 0 |a What Does It Mean to "Understand" Concavity and Inflection Points? /  |c Steven R. Jones. 
264 1 |a [Place of publication not identified] :  |b Distributed by ERIC Clearinghouse,  |c 2016. 
300 |a 1 online resource (1 online resource (8 pages)) 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
500 |a Availability: North American Chapter of the International Group for the Psychology of Mathematics Education. e-mail: pmena.steeringcommittee@gmail.com; Web site: http://www.pmena.org/.  |5 ericd. 
500 |a Abstractor: As Provided.  |5 ericd. 
500 |a Educational level discussed: Postsecondary Education. 
516 |a Text (Speeches/Meeting Papers) 
516 |a Text (Reports, Evaluative) 
520 |a The calculus concepts of concavity and inflection points are often given meaning through the shape or curvature of a graph. However, there appear to be deeper core ideas for these two concepts, though the research literature has yet to give explicit attention to what these core ideas might be or what it might mean to "understand" them. In this paper, I propose a framework for the concavity and inflection point concepts, using the construct of covariation, wherein I propose conceptual (as opposed to mathematical) definitions that can be used for both research and instruction. I demonstrate that the proposed conceptual definitions in this framework contain important implications for the teaching and learning of these concepts, and that they provide more powerful insight into student difficulties than more traditional graphical interpretations. [For the complete proceedings, see ED583608.] 
524 |a North American Chapter of the International Group for the Psychology of Mathematics Education, Paper presented at the Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (38th, Tucson, AZ, Nov 3-6, 2016).  |2 ericd. 
650 0 7 |a Calculus.  |2 ericd. 
650 0 7 |a Mathematical Concepts.  |2 ericd. 
650 0 7 |a Concept Teaching.  |2 ericd. 
650 0 7 |a Teaching Methods.  |2 ericd. 
650 0 7 |a Postsecondary Education.  |2 ericd. 
650 0 7 |a Mathematics Skills.  |2 ericd. 
650 0 7 |a Thinking Skills.  |2 ericd. 
650 0 7 |a Instructional Effectiveness.  |2 ericd. 
650 0 7 |a Teaching Models.  |2 ericd. 
650 0 7 |a Cognitive Ability.  |2 ericd. 
856 4 0 |u http://files.eric.ed.gov/fulltext/ED583775.pdf  |z Full Text (via ERIC) 
907 |a .b101957889  |b 07-08-20  |c 09-27-18 
998 |a web  |b 09-27-18  |c f  |d m   |e -  |f eng  |g xx   |h 0  |i 1 
956 |a ERIC 
999 f f |i 25881872-2293-55ea-b076-ce6f5437a0f7  |s f8c6ff52-8d57-597b-a897-e86d9a3ff6a3 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e ED583775  |h Other scheme  |i web  |n 1