Biotechnologies of crop improvement. Volume 3, Genomic approaches / Satbir Singh Gosal, Shabir Hussain Wani, editors.

Saved in:
Bibliographic Details
Online Access: Full Text (via Springer)
Other Authors: Gosal, Satbir Singh (Editor), Wani, Shabir Hussain (Editor)
Other title:Genomic approaches.
Format: eBook
Language:English
Published: Cham, Switzerland : Springer, [2018]
Subjects:
Table of Contents:
  • Intro; Dedication; Foreword; Preface; Contents; Contributors; About the Editors; Chapter 1: Marker-Assisted Breeding for Abiotic Stress Tolerance in Crop Plants; 1.1 Introduction; 1.2 Steps in Marker-Assisted Selection (MAS); 1.2.1 Selection of Plants with Desired Morphological Traits; 1.2.2 Development of Breeding Population; 1.2.3 Marker-Assisted Selection of Plants with Desired Traits; 1.2.4 Marker Validation; 1.2.5 Correlation with Morphological Traits; 1.3 MAB for Abiotic Stress Tolerance in Major Crop Plants; 1.3.1 Rice; 1.3.2 Wheat; 1.3.3 Maize; 1.3.4 Chickpea; 1.3.5 Common Bean.
  • 1.3.6 Soybean Al Tolerance1.3.7 Pea; 1.4 Conclusion; References; Chapter 2: Dynamics of Salt Tolerance: Molecular Perspectives; 2.1 Introduction; 2.2 Effect of Salinity on Plants; 2.2.1 Germination and Growth; 2.2.2 Effect of Salinity on Photosynthesis and Photosynthetic Pigments; 2.2.3 Water Relation; 2.3 Mechanism of Salt Tolerance; 2.3.1 Tissue Na+ Accumulation as an Indicator of Salt Tolerance; 2.3.2 Na+ Exclusion from Roots; 2.3.3 Sequestration of Na+ into Vacuoles; 2.3.4 Enhanced Tissue Tolerance to High Na+ Concentrations; 2.3.5 Cl ̄Toxicity During Salt Stress.
  • 2.4 Conclusions and Future PerspectivesReferences; Chapter 3: Marker-Assisted Breeding for Disease Resistance in Crop Plants; 3.1 Introduction; 3.2 Benefits of MAS; 3.3 Limits of MAS; 3.4 Case Study of MAS; 3.4.1 SCN Resistance Breeding; 3.5 Marker Discovery; 3.6 Confirmation of Parental Polymorphism; 3.7 High-Throughput Marker Screening; 3.8 Using Marker Data to Inform Selections; 3.9 MAS Considerations; 3.10 Genomic Selection in Crop Breeding; 3.11 Statistics of Prediction Models; 3.12 Factors Affecting Prediction Accuracy; 3.12.1 Training Population Size.
  • 3.12.2 The Extent of LD Between the Markers and the QTL3.12.3 Trait Heritability; 3.12.4 Number of QTL and the Corresponding Effects; 3.13 Conclusions; References; Chapter 4: Morpho-Physiological Traits and Molecular Intricacies Associated with Tolerance to Combined Drought and Pathogen Stress in Plants; 4.1 Introduction; 4.2 Morpho-Physiological Traits that Likely Govern Plant Response to Combined Stress; 4.2.1 Cell Membrane Stability; 4.2.2 Leaf Water Potential; 4.2.3 Stomatal Movement; 4.2.4 Root Length; 4.3 Impact of Combined Stress on Other Morpho-Physiological Parameters.
  • 4.3.1 Leaf Area4.3.2 Leaf Greenness; 4.3.3 Canopy Temperature; 4.3.4 Time to Anthesis; 4.4 More Potential Traits: Analysis from Individual Stress Studies; 4.4.1 Trichome Type and Density; 4.4.2 Cuticular Wax Composition; 4.5 Molecular Mechanism Governing Traits Imparting Combined Stress Tolerance in Plants; 4.6 Future Perspectives; References; Chapter 5: Genome Editing for Crop Improvement: Status and Prospects; 5.1 Introduction; 5.1.1 Zinc-Finger Nucleases (ZFNs); 5.1.2 Transcription Activator-Like Effector Nucleases (TALENs); 5.1.3 CRISPR/Cas System.