A workout in computational finance / Michael Aichinger and Andreas Binder.

A comprehensive introduction to various numerical methods used in computational finance today Quantitative skills are a prerequisite for anyone working in finance or beginning a career in the field, as well as risk managers. A thorough grounding in numerical methods is necessary, as is the ability t...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via O'Reilly/Safari)
Main Author: Aichinger, Michael, 1979-
Other Authors: Binder, Andreas, 1964-
Format: eBook
Language:English
Published: Chichester, West Sussex, United Kingdom : Wiley, [2013]
Subjects:

MARC

LEADER 00000cam a2200000 i 4500
001 b10287516
006 m o d
007 cr |||||||||||
008 130503s2013 enk ob 001 0 eng
005 20240829144607.2
010 |a  2013018390 
019 |a 900652435  |a 992825831  |a 1148151474 
020 |a 9781119973492  |q (epub) 
020 |a 111997349X  |q (epub) 
020 |a 9781119973485  |q (pdf) 
020 |a 1119973481  |q (pdf) 
020 |a 9781119973508  |q (mobipocket) 
020 |a 1119973503  |q (mobipocket) 
020 |a 9781119973515  |q (electronic bk.) 
020 |a 1119973511  |q (electronic bk.) 
020 |a 1299804853 
020 |a 9781299804852 
020 |a 1119971918 
020 |a 9781119971917 
020 |z 9781119971917  |q (cloth/website) 
029 1 |a CHNEW  |b 000941773 
029 1 |a CHVBK  |b 480220506 
029 1 |a DEBBG  |b BV041573551 
029 1 |a DEBBG  |b BV041907386 
029 1 |a DEBBG  |b BV043395816 
029 1 |a DEBSZ  |b 423136372 
029 1 |a DEBSZ  |b 428125182 
029 1 |a NZ1  |b 15341901 
029 1 |a NZ1  |b 15905511 
029 1 |a AU@  |b 000062436782 
029 1 |a AU@  |b 000066260807 
035 |a (OCoLC)safo842323326 
035 |a (OCoLC)842323326  |z (OCoLC)900652435  |z (OCoLC)992825831  |z (OCoLC)1148151474 
037 |a safo9781119971917 
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d YDX  |d DG1  |d IDEBK  |d CUS  |d N$T  |d YDXCP  |d B24X7  |d OCLCF  |d DEBSZ  |d UMI  |d EBLCP  |d OCLCQ  |d DEBBG  |d DG1  |d LIP  |d OCLCQ  |d K6U  |d SAV  |d OCLCQ  |d COCUF  |d INT  |d VT2  |d AU@  |d OCLCQ  |d WYU  |d U3W  |d OCLCQ  |d UAB  |d OCLCQ  |d C6I  |d OCLCQ  |d UKCRE  |d OCLCO  |d OCLCQ  |d OCLCO 
042 |a pcc 
049 |a GWRE 
050 0 0 |a HG106 
066 |c (S 
100 1 |a Aichinger, Michael,  |d 1979- 
245 1 2 |a A workout in computational finance /  |c Michael Aichinger and Andreas Binder. 
264 1 |a Chichester, West Sussex, United Kingdom :  |b Wiley,  |c [2013] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a volume  |b nc  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record and CIP data provided by publisher. 
505 0 |6 880-01  |a A Workout in Computational Finance; Contents; Acknowledgements; About the Authors; 1 Introduction and Reading Guide; 2 Binomial Trees; 2.1 Equities and Basic Options; 2.2 The One Period Model; 2.3 The Multiperiod Binomial Model; 2.4 Black-Scholes and Trees; 2.5 Strengths and Weaknesses of Binomial Trees; 2.5.1 Ease of Implementation; 2.5.2 Oscillations; 2.5.3 Non-recombining Trees; 2.5.4 Exotic Options and Trees; 2.5.5 Greeks and Binomial Trees; 2.5.6 Grid Adaptivity and Trees; 2.6 Conclusion; 3 Finite Differences and the Black-Scholes PDE; 3.1 A Continuous Time Model for Equity Prices. 
505 8 |a 3.2 Black-Scholes Model: From the SDE to the PDE3.3 Finite Differences; 3.4 Time Discretization; 3.5 Stability Considerations; 3.6 Finite Differences and the Heat Equation; 3.6.1 Numerical Results; 3.7 Appendix: Error Analysis; 4 Mean Reversion and Trinomial Trees; 4.1 Some Fixed Income Terms; 4.1.1 Interest Rates and Compounding; 4.1.2 Libor Rates and Vanilla Interest Rate Swaps; 4.2 Black76 for Caps and Swaptions; 4.3 One-Factor Short Rate Models; 4.3.1 Prominent Short Rate Models; 4.4 The Hull-White Model in More Detail; 4.5 Trinomial Trees; 5 Upwinding Techniques for Short Rate Models. 
505 8 |a 5.1 Derivation of a PDE for Short Rate Models5.2 Upwind Schemes; 5.2.1 Model Equation; 5.3 A Puttable Fixed Rate Bond under the Hull-White One Factor Model; 5.3.1 Bond Details; 5.3.2 Model Details; 5.3.3 Numerical Method; 5.3.4 An Algorithm in Pseudocode; 5.3.5 Results; 6 Boundary, Terminal and Interface Conditions and their Influence; 6.1 Terminal Conditions for Equity Options; 6.2 Terminal Conditions for Fixed Income Instruments; 6.3 Callability and Bermudan Options; 6.4 Dividends; 6.5 Snowballs and TARNs; 6.6 Boundary Conditions. 
505 8 |a 6.6.1 Double Barrier Options and Dirichlet Boundary Conditions6.6.2 Artificial Boundary Conditions and the Neumann Case; 7 Finite Element Methods; 7.1 Introduction; 7.1.1 Weighted Residual Methods; 7.1.2 Basic Steps; 7.2 Grid Generation; 7.3 Elements; 7.3.1 1D Elements; 7.3.2 2D Elements; 7.4 The Assembling Process; 7.4.1 Element Matrices; 7.4.2 Time Discretization; 7.4.3 Global Matrices; 7.4.4 Boundary Conditions; 7.4.5 Application of the Finite Element Method to Convection-Diffusion-Reaction Problems; 7.5 A Zero Coupon Bond Under the Two Factor Hull-White Model. 
505 8 |a 7.6 Appendix: Higher Order Elements7.6.1 3D Elements; 7.6.2 Local and Natural Coordinates; 8 Solving Systems of Linear Equations; 8.1 Direct Methods; 8.1.1 Gaussian Elimination; 8.1.2 Thomas Algorithm; 8.1.3 LU Decomposition; 8.1.4 Cholesky Decomposition; 8.2 Iterative Solvers; 8.2.1 Matrix Decomposition; 8.2.2 Krylov Methods; 8.2.3 Multigrid Solvers; 8.2.4 Preconditioning; 9 Monte Carlo Simulation; 9.1 The Principles of Monte Carlo Integration; 9.2 Pricing Derivatives with Monte Carlo Methods; 9.2.1 Discretizing the Stochastic Differential Equation; 9.2.2 Pricing Formalism. 
520 |a A comprehensive introduction to various numerical methods used in computational finance today Quantitative skills are a prerequisite for anyone working in finance or beginning a career in the field, as well as risk managers. A thorough grounding in numerical methods is necessary, as is the ability to assess their quality, advantages, and limitations. This book offers a thorough introduction to each method, revealing the numerical traps that practitioners frequently fall into. Each method is referenced with practical, real-world examples in the areas of valuation, risk analysis, and ca. 
650 0 |a Finance  |x Mathematical models. 
650 7 |a Finance  |x Mathematical models  |2 fast 
700 1 |a Binder, Andreas,  |d 1964- 
776 0 8 |i Print version:  |a Aichinger, Michael, 1979-  |t Workout in computational finance.  |d Hoboken, N.J. : John Wiley & Sons, Inc., [2013]  |z 9781119971917  |w (DLC) 2013017386 
856 4 0 |u https://go.oreilly.com/UniOfColoradoBoulder/library/view/~/9781119971917/?ar  |z Full Text (via O'Reilly/Safari) 
880 0 0 |6 505-01/(S  |g Machine generated contents note:  |g 1.  |t Introduction and Reading Guide --  |g 2.  |t Binomial Trees --  |g 2.1.  |t Equities and Basic Options --  |g 2.2.  |t One Period Model --  |g 2.3.  |t Multiperiod Binomial Model --  |g 2.4.  |t Black-Scholes and Trees --  |g 2.5.  |t Strengths and Weaknesses of Binomial Trees --  |g 2.5.1.  |t Ease of Implementation --  |g 2.5.2.  |t Oscillations --  |g 2.5.3.  |t Non-recombining Trees --  |g 2.5.4.  |t Exotic Options and Trees --  |g 2.5.5.  |t Greeks and Binomial Trees --  |g 2.5.6.  |t Grid Adaptivity and Trees --  |g 2.6.  |t Conclusion --  |g 3.  |t Finite Differences and the Black-Scholes PDE --  |g 3.1.  |t Continuous Time Model for Equity Prices --  |g 3.2.  |t Black-Scholes Model: From the SDE to the PDE --  |g 3.3.  |t Finite Differences --  |g 3.4.  |t Time Discretization --  |g 3.5.  |t Stability Considerations --  |g 3.6.  |t Finite Differences and the Heat Equation --  |g 3.6.1.  |t Numerical Results --  |g 3.7.  |t Appendix: Error Analysis --  |g 4.  |t Mean Reversion and Trinomial Trees --  |g 4.1.  |t Some Fixed Income Terms --  |g 4.1.1.  |t Interest Rates and Compounding --  |g 4.1.2.  |t Libor Rates and Vanilla Interest Rate Swaps --  |g 4.2.  |t Black76 for Caps and Swaptions --  |g 4.3.  |t One-Factor Short Rate Models --  |g 4.3.1.  |t Prominent Short Rate Models --  |g 4.4.  |t Hull-White Model in More Detail --  |g 4.5.  |t Trinomial Trees --  |g 5.  |t Upwinding Techniques for Short Rate Models --  |g 5.1.  |t Derivation of a PDE for Short Rate Models --  |g 5.2.  |t Upwind Schemes --  |g 5.2.1.  |t Model Equation --  |g 5.3.  |t Puttable Fixed Rate Bond under the Hull-White One Factor Model --  |g 5.3.1.  |t Bond Details --  |g 5.3.2.  |t Model Details --  |g 5.3.3.  |t Numerical Method --  |g 5.3.4.  |t Algorithm in Pseudocode --  |g 5.3.5.  |t Results --  |g 6.  |t Boundary, Terminal and Interface Conditions and their Influence --  |g 6.1.  |t Terminal Conditions for Equity Options --  |g 6.2.  |t Terminal Conditions for Fixed Income Instruments --  |g 6.3.  |t Callability and Bermudan Options --  |g 6.4.  |t Dividends --  |g 6.5.  |t Snowballs and TARNs --  |g 6.6.  |t Boundary Conditions --  |g 6.6.1.  |t Double Barrier Options and Dirichlet Boundary Conditions --  |g 6.6.2.  |t Artificial Boundary Conditions and the Neumann Case --  |g 7.  |t Finite Element Methods --  |g 7.1.  |t Introduction --  |g 7.1.1.  |t Weighted Residual Methods --  |g 7.1.2.  |t Basic Steps --  |g 7.2.  |t Grid Generation --  |g 7.3.  |t Elements --  |g 7.3.1.  |t 1D Elements --  |g 7.3.2.  |t 2D Elements --  |g 7.4.  |t Assembling Process --  |g 7.4.1.  |t Element Matrices --  |g 7.4.2.  |t Time Discretization --  |g 7.4.3.  |t Global Matrices --  |g 7.4.4.  |t Boundary Conditions --  |g 7.4.5.  |t Application of the Finite Element Method to Convection-Diffusion-Reaction Problems --  |g 7.5.  |t Zero Coupon Bond Under the Two Factor Hull-White Model --  |g 7.6.  |t Appendix: Higher Order Elements --  |g 7.6.1.  |t 3D Elements --  |g 7.6.2.  |t Local and Natural Coordinates --  |g 8.  |t Solving Systems of Linear Equations --  |g 8.1.  |t Direct Methods --  |g 8.1.1.  |t Gaussian Elimination --  |g 8.1.2.  |t Thomas Algorithm --  |g 8.1.3.  |t LU Decomposition --  |g 8.1.4.  |t Cholesky Decomposition --  |g 8.2.  |t Iterative Solvers --  |g 8.2.1.  |t Matrix Decomposition --  |g 8.2.2.  |t Krylov Methods --  |g 8.2.3.  |t Multigrid Solvers --  |g 8.2.4.  |t Preconditioning --  |g 9.  |t Monte Carlo Simulation --  |g 9.1.  |t Principles of Monte Carlo Integration --  |g 9.2.  |t Pricing Derivatives with Monte Carlo Methods --  |g 9.2.1.  |t Discretizing the Stochastic Differential Equation --  |g 9.2.2.  |t Pricing Formalism --  |g 9.2.3.  |t Valuation of a Steepener under a Two Factor Hull-White Model --  |g 9.3.  |t Introduction to the Libor Market Model --  |g 9.4.  |t Random Number Generation --  |g 9.4.1.  |t Properties of a Random Number Generator --  |g 9.4.2.  |t Uniform Variates --  |g 9.4.3.  |t Random Vectors --  |g 9.4.4.  |t Recent Developments in Random Number Generation --  |g 9.4.5.  |t Transforming Variables --  |g 9.4.6.  |t Random Number Generation for Commonly Used Distributions --  |g 10.  |t Advanced Monte Carlo Techniques --  |g 10.1.  |t Variance Reduction Techniques --  |g 10.1.1.  |t Antithetic Variates --  |g 10.1.2.  |t Control Variates --  |g 10.1.3.  |t Conditioning --  |g 10.1.4.  |t Additional Techniques for Variance Reduction --  |g 10.2.  |t Quasi Monte Carlo Method --  |g 10.2.1.  |t Low-Discrepancy Sequences --  |g 10.2.2.  |t Randomizing QMC --  |g 10.3.  |t Brownian Bridge Technique --  |g 10.3.1.  |t Steepener under a Libor Market Model --  |g 11.  |t Valuation of Financial Instruments with Embedded American/Bermudan Options within Monte Carlo Frameworks --  |g 11.1.  |t Pricing American options using the Longstaff and Schwartz algorithm --  |g 11.2.  |t Modified Least Squares Monte Carlo Algorithm for Bermudan Callable Interest Rate Instruments --  |g 11.2.1.  |t Algorithm: Extended LSMC Method for Bermudan Options --  |g 11.2.2.  |t Notes on Basis Functions and Regression --  |g 11.3.  |t Examples --  |g 11.3.1.  |t Bermudan Callable Floater under Different Short-rate Models --  |g 11.3.2.  |t Bermudan Callable Steepener Swap under a Two Factor Hull-White Model --  |g 11.3.3.  |t Bermudan Callable Steepener Cross Currency Swap in a 3D IR/FX Model Framework --  |g 12.  |t Characteristic Function Methods for Option Pricing --  |g 12.1.  |t Equity Models --  |g 12.1.1.  |t Heston Model --  |g 12.1.2.  |t Jump Diffusion Models --  |g 12.1.3.  |t Infinite Activity Models --  |g 12.1.4.  |t Bates Model --  |g 12.2.  |t Fourier Techniques --  |g 12.2.1.  |t Fast Fourier Transform Methods --  |g 12.2.2.  |t Fourier-Cosine Expansion Methods --  |g 13.  |t Numerical Methods for the Solution of PIDEs --  |g 13.1.  |t PIDE for Jump Models --  |g 13.2.  |t Numerical Solution of the PIDE --  |g 13.2.1.  |t Discretization of the Spatial Domain --  |g 13.2.2.  |t Discretization of the Time Domain --  |g 13.2.3.  |t European Option under the Kou Jump Diffusion Model --  |g 13.3.  |t Appendix: Numerical Integration via Newton-Cotes Formulae --  |g 14.  |t Copulas and the Pitfalls of Correlation --  |g 14.1.  |t Correlation --  |g 14.1.1.  |t Pearson's/ρ --  |g 14.1.2.  |t Spearman's ρ --  |g 14.1.3.  |t Kendall's τ --  |g 14.1.4.  |t Other Measures --  |g 14.2.  |t Copulas --  |g 14.2.1.  |t Basic Concepts --  |g 14.2.2.  |t Important Copula Functions --  |g 14.2.3.  |t Parameter estimation and sampling --  |g 14.2.4.  |t Default Probabilities for Credit Derivatives --  |g 15.  |t Parameter Calibration and Inverse Problems --  |g 15.1.  |t Implied Black-Scholes Volatilities --  |g 15.2.  |t Calibration Problems for Yield Curves --  |g 15.3.  |t Reversion Speed and Volatility --  |g 15.4.  |t Local Volatility --  |g 15.4.1.  |t Dupire's Inversion Formula --  |g 15.4.2.  |t Identifying Local Volatility --  |g 15.4.3.  |t Results --  |g 15.5.  |t Identifying Parameters in Volatility Models --  |g 15.5.1.  |t Model Calibration for the FTSE-100 --  |g 16.  |t Optimization Techniques --  |g 16.1.  |t Model Calibration and Optimization --  |g 16.1.1.  |t Gradient-Based Algorithms for Nonlinear Least Squares Problems --  |g 16.2.  |t Heuristically Inspired Algorithms --  |g 16.2.1.  |t Simulated Annealing --  |g 16.2.2.  |t Differential Evolution --  |g 16.3.  |t Hybrid Algorithm for Heston Model Calibration --  |g 16.4.  |t Portfolio Optimization --  |g 17.  |t Risk Management --  |g 17.1.  |t Value at Risk and Expected Shortfall --  |g 17.1.1.  |t Parametric VaR --  |g 17.1.2.  |t Historical VaR --  |g 17.1.3.  |t Monte Carlo VaR --  |g 17.1.4.  |t Individual and Contribution VaR --  |g 17.2.  |t Principal Component Analysis --  |g 17.2.1.  |t Principal Component Analysis for Non-scalar Risk Factors --  |g 17.2.2.  |t Principal Components for Fast Valuation --  |g 17.3.  |t Extreme Value Theory --  |g 18.  |t Quantitative Finance on Parallel Architectures --  |g 18.1.  |t Short Introduction to Parallel Computing --  |g 18.2.  |t Different Levels of Parallelization --  |g 18.3.  |t GPU Programming --  |g 18.3.1.  |t CUDA and OpenCL --  |g 18.3.2.  |t Memory --  |g 18.4.  |t Parallelization of Single Instrument Valuations using (Q)MC --  |g 18.5.  |t Parallelization of Hybrid Calibration Algorithms --  |g 18.5.1.  |t Implementation Details --  |g 18.5.2.  |t Results --  |g 19.  |t Building Large Software Systems for the Financial Industry. 
915 |a - 
956 |a O'Reilly-Safari eBooks 
956 |b O'Reilly Online Learning: Academic/Public Library Edition 
994 |a 92  |b COD 
998 |b Subsequent record output 
999 f f |i 8ad9f942-4d4a-54e4-9e25-aa253739fde4  |s 3daa45cc-5505-5d50-a9dd-153254342ce1 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e HG106  |h Library of Congress classification  |i web  |n 1