Learning-based local visual representation and indexing / Rongrong Ji, Yue Gao, Ling-Yu Duan, Hongxun Yao, Qionghai Dai.

Learning-Based Local Visual Representation and Indexing , reviews the state-of-the-art in visual content representation and indexing, introduces cutting-edge techniques in learning based visual representation, and discusses emerging topics in visual local representation, and introduces the most rece...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via O'Reilly/Safari)
Main Authors: Rongrong, Ji (Author), Yao, Hongxun (Author), Gao, Yue (Author), Duan, Ling-Yu (Author), Dai, Qionghai (Author)
Format: eBook
Language:English
Published: Amsterdam ; Waltham, MA : Elsevier, 2014.
Edition:First edition.
Subjects:

MARC

LEADER 00000cam a2200000 i 4500
001 b10296648
006 m o d
007 cr |||||||||||
008 150521s2014 ne a ob 000 0 eng d
005 20240829145202.0
019 |a 907609895 
020 |a 9780128026205 
020 |a 0128026200 
020 |a 0128024097 
020 |a 9780128024096 
020 |z 9780128024096 
029 1 |a AU@  |b 000058374643 
029 1 |a CHDSB  |b 006374965 
029 1 |a DEBBG  |b BV042683312 
029 1 |a DEBBG  |b BV043620010 
029 1 |a DEBSZ  |b 432153829 
029 1 |a DEBSZ  |b 446585173 
029 1 |a GBVCP  |b 835874117 
029 1 |a AU@  |b 000056093254 
035 |a (OCoLC)safo909780228 
035 |a (OCoLC)909780228  |z (OCoLC)907609895 
037 |a safo9780128024096 
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d DEBBG  |d EBLCP  |d CHVBK  |d YDXCP  |d DEBSZ  |d COO  |d OCLCF  |d IDB  |d MERUC  |d WRM  |d CEF  |d OCLCQ  |d CUY  |d ZCU  |d ICG  |d DKC  |d OCLCQ  |d OCLCO  |d OCLCA  |d OCLCQ  |d OCLCA  |d SGP  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d OCLCQ  |d SXB  |d OCLCQ 
049 |a GWRE 
050 4 |a TA1634 
245 0 0 |a Learning-based local visual representation and indexing /  |c Rongrong Ji, Yue Gao, Ling-Yu Duan, Hongxun Yao, Qionghai Dai. 
250 |a First edition. 
264 1 |a Amsterdam ;  |a Waltham, MA :  |b Elsevier,  |c 2014. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a volume  |b nc  |2 rdacarrier 
588 0 |a Print version record. 
504 |a Includes bibliographical references. 
505 0 |a Front Cover; Learning-Based Local Visual Representation and Indexing; Copyright; Contents; Preface; List of Figures; List of Tables; List of Algorithms; Chapter 1: Introduction; 1.1 Background and Significance; 1.2 Literature Review of the Visual Dictionary; 1.2.1 Local Interest-Point Extraction; 1.2.2 Visual-Dictionary Generation and Indexing ; 1.3 Contents of This Book; Chapter 2: Interest-Point Detection: Beyond Local Scale; 2.1 Introduction; 2.2 Difference of Contextual Gaussians; 2.2.1 Local Interest-Point Detection; 2.2.2 Accumulating Contextual Gaussian Difference. 
505 8 |a 2.3 Mean Shift-Based Localization2.3.1 Localization Algorithm ; 2.3.2 Comparison to Saliency; 2.4 Detector Learning; 2.5 Experiments; 2.5.1 Database and Evaluation Criteria; 2.5.2 Detector Repeatability; 2.5.3 CASL for Image Search and Classification; 2.6 Summary; Chapter 3: Unsupervised Dictionary Optimization; 3.1 Introduction; 3.2 Density-Based Metric Learning; 3.2.1 Feature-Space Density-Field Estimation ; 3.2.2 Learning a Metric for Quantization; 3.3 Chain-Structure Recognition ; 3.3.1 Chain Recognition in Dictionary Hierarchy; 3.4 Dictionary Transfer Learning. 
505 8 |a 3.4.1 Cross-database Case3.4.2 Incremental Transfer; 3.5 Experiments; 3.5.1 Quantitative results; 3.6 Summary; Chapter 4: Supervised Dictionary Learning via Semantic Embedding ; 4.1 Introduction; 4.2 Semantic Labeling Propagation; 4.2.1 Density Diversity Estimation ; 4.3 Supervised Dictionary Learning; 4.3.1 Generative Modeling ; 4.3.2 Supervised Quantization ; 4.4 Experiments; 4.4.1 Database and Evaluations; 4.4.2 Quantitative Results; 4.5 Summary; Chapter 5: Visual Pattern Mining; 5.1 Introduction; 5.2 Discriminative 3D Pattern Mining; 5.2.1 The Proposed Mining Scheme. 
505 8 |a 5.2.2 Sparse Pattern Coding5.3 CBoP for Low Bit Rate Mobile Visual Search; 5.4 Quantitative Results; 5.4.1 Data Collection; 5.4.2 Evaluation Criteria; 5.4.3 Baselines; 5.4.4 Quantitative Performance; 5.5 Conclusion; Conclusions; References. 
520 |a Learning-Based Local Visual Representation and Indexing , reviews the state-of-the-art in visual content representation and indexing, introduces cutting-edge techniques in learning based visual representation, and discusses emerging topics in visual local representation, and introduces the most recent advances in content-based visual search techniques. Discusses state-of-the-art procedures in learning-based local visual representation. Shows how to master the basic techniques needed for building a large-scale visual search engine and indexing system Provides insight into how machine learning techniques can be leveraged to refine the visual recognition system, especially in the part of visual feature representation. 
650 0 |a Computer vision. 
650 0 |a Pattern recognition systems. 
650 7 |a Computer vision  |2 fast 
650 7 |a Pattern recognition systems  |2 fast 
700 1 |a Rongrong, Ji,  |e author. 
700 1 |a Yao, Hongxun,  |e author. 
700 1 |a Gao, Yue,  |e author. 
700 1 |a Duan, Ling-Yu,  |e author. 
700 1 |a Dai, Qionghai,  |e author. 
758 |i has work:  |a Learning-based local visual representation and indexing (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGM4qqVRFHMyFMkFhhMqpK  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |t Learning-based local visual representation and indexing  |z 9780128026205  |w (OCoLC)894611891 
856 4 0 |u https://go.oreilly.com/UniOfColoradoBoulder/library/view/~/9780128024096/?ar  |z Full Text (via O'Reilly/Safari) 
915 |a - 
956 |a O'Reilly-Safari eBooks 
956 |b O'Reilly Online Learning: Academic/Public Library Edition 
994 |a 92  |b COD 
998 |b Subsequent record output 
999 f f |i 1feec665-e80e-53b0-bdc5-1f43a38cffe1  |s 4419b929-5bf4-5290-8060-d2fc63588be2 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e TA1634  |h Library of Congress classification  |i web  |n 1