Hands-on machine learning on Google cloud platform : implementing smart and efficient analytics using Cloud ML Engine / Giuseppe Ciaburro, V. Kishore Ayyadevara, Alexis Perrier.

Unleash Google's Cloud Platform to build, train and optimize machine learning models About This Book Get well versed in GCP pre-existing services to build your own smart models A comprehensive guide covering aspects from data processing, analyzing to building and training ML models A practical...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via O'Reilly/Safari)
Main Authors: Ciaburro, Giuseppe (Author), Ayyadevara, V. Kishore (Author), Perrier, Alexis (Author)
Format: eBook
Language:English
Published: Birmingham, UK : Packt Publishing, 2018.
Subjects:
Table of Contents:
  • Cover
  • Title Page
  • Copyright and Credits
  • Packt Upsell
  • Contributors
  • Table of Contents
  • Preface
  • Chapter 1: Introducing the Google Cloud Platform
  • ML and the cloud
  • The nature of the cloud
  • Public cloud
  • Managed cloud versus unmanaged cloud
  • IaaS versus PaaS versus SaaS
  • Costs and pricing
  • ML
  • Introducing the GCP
  • Mapping the GCP
  • Getting started with GCP
  • Project-based organization
  • Creating your first project
  • Roles and permissions
  • Further reading
  • Summary
  • Chapter 2: Google Compute Engine
  • Google Compute Engine
  • VMs, disks, images, and snapshots
  • Creating a VM
  • Google Shell
  • Google Cloud Platform SDK
  • Gcloud
  • Gcloud config
  • Accessing your instance with gcloud
  • Transferring files with gcloud
  • Managing the VM
  • IPs
  • Setting up a data science stack on the VM
  • BOX the ipython console
  • Troubleshooting
  • Adding GPUs to instances
  • Startup scripts and stop scripts
  • Resources and further reading
  • Summary
  • Chapter 3: Google Cloud Storage
  • Google Cloud Storage
  • Box-storage versus drive
  • Accessing control lists
  • Access and management through the web console
  • gsutil
  • gsutil cheatsheet
  • Advanced gsutil
  • Signed URLs
  • Creating a bucket in Google Cloud Storage
  • Google Storage namespace
  • Naming a bucket
  • Naming an object
  • Creating a bucket
  • Google Cloud Storage console
  • Google Cloud Storage gsutil
  • Life cycle management
  • Google Cloud SQL
  • Databases supported
  • Google Cloud SQL performance and scalability
  • Google Cloud SQL security and architecture
  • Creating Google Cloud SQL instances
  • Summary
  • Chapter 4: Querying Your Data with BigQuery
  • Approaching big data
  • Data structuring
  • Querying the database
  • SQL basics
  • Google BigQuery
  • BigQuery basics
  • Using a graphical web UI
  • Visualizing data with Google Data Studio.
  • Creating reports in Data Studio
  • Summary
  • Chapter 5: Transforming Your Data
  • How to clean and prepare the data
  • Google Cloud Dataprep
  • Exploring Dataprep console
  • Removing empty cells
  • Replacing incorrect values
  • Mismatched values
  • Finding outliers in the data
  • Visual functionality
  • Statistical information
  • Removing outliers
  • Run Job
  • Scale of features
  • Min-max normalization
  • z score standardization
  • Google Cloud Dataflow
  • Summary
  • Chapter 6: Essential Machine Learning
  • Applications of machine learning
  • Financial services
  • Retail industry
  • Telecom industry
  • Supervised and unsupervised machine learning
  • Overview of machine learning techniques
  • Objective function in regression
  • Linear regression
  • Decision tree
  • Random forest
  • Gradient boosting
  • Neural network
  • Logistic regression
  • Objective function in classification
  • Data splitting
  • Measuring the accuracy of a model
  • Absolute error
  • Root mean square error
  • The difference between machine learning and deep learning
  • Applications of deep learning
  • Summary
  • Chapter 7: Google Machine Learning APIs
  • Vision API
  • Enabling the API
  • Opening an instance
  • Creating an instance using Cloud Shell
  • Label detection
  • Text detection
  • Logo detection
  • Landmark detection
  • Cloud Translation API
  • Enabling the API
  • Natural Language API
  • Speech-to-text API
  • Video Intelligence API
  • Summary
  • Chapter 8: Creating ML Applications with Firebase
  • Features of Firebase
  • Building a web application
  • Building a mobile application
  • Summary
  • Chapter 9: Neural Networks with TensorFlow and Keras
  • Overview of a neural network
  • Setting up Google Cloud Datalab
  • Installing and importing the required packages
  • Working details of a simple neural network
  • Backpropagation
  • Implementing a simple neural network in Keras.
  • Understanding the various loss functions
  • Softmax activation
  • Building a more complex network in Keras
  • Activation functions
  • Optimizers
  • Increasing the depth of network
  • Impact on change in batch size
  • Implementing neural networks in TensorFlow
  • Using premade estimators
  • Creating custom estimators
  • Summary
  • Chapter 10: Evaluating Results with TensorBoard
  • Setting up TensorBoard
  • Overview of summary operations
  • Ways to debug the code
  • Setting up TensorBoard from TensorFlow
  • Summaries from custom estimator
  • Summary
  • Chapter 11: Optimizing the Model through Hyperparameter Tuning
  • The intuition of hyperparameter tuning
  • Overview of hyperparameter tuning
  • Hyperparameter tuning in Google Cloud
  • The model file
  • Configuration file
  • Setup file
  • The __init__ file
  • Summary
  • Chapter 12: Preventing Overfitting with Regularization
  • Intuition of over/under fitting
  • Reducing overfitting
  • Implementing L2 regularization
  • Implementing L1 regularization
  • Implementing dropout
  • Reducing underfitting
  • Summary
  • Chapter 13: Beyond Feedforward Networks
  • CNN and RNN
  • Convolutional neural networks
  • Convolution layer
  • Rectified Linear Units
  • Pooling layers
  • Fully connected layer
  • Structure of a CNN
  • TensorFlow overview
  • Handwriting Recognition using CNN and TensorFlow
  • Run Python code on Google Cloud Shell
  • Recurrent neural network
  • Fully recurrent neural networks
  • Recursive neural networks
  • Hopfield recurrent neural networks
  • Elman neural networks
  • Long short-term memory networks
  • Handwriting Recognition using RNN and TensorFlow
  • LSTM on Google Cloud Shell
  • Summary
  • Chapter 14: Time Series with LSTMs
  • Introducing time series
  • Classical approach to time series
  • Estimation of the trend component
  • Estimating the seasonality component
  • Time series models.
  • Autoregressive models
  • Moving average models
  • Autoregressive moving average model
  • Autoregressive integrated moving average models
  • Removing seasonality from a time series
  • Analyzing a time series dataset
  • Identifying a trend in a time series
  • Time series decomposition
  • Additive method
  • Multiplicative method
  • LSTM for time series analysis
  • Overview of the time series dataset
  • Data scaling
  • Data splitting
  • Building the model
  • Making predictions
  • Summary
  • Chapter 15: Reinforcement Learning
  • Reinforcement learning introduction
  • Agent-Environment interface
  • Markov Decision Process
  • Discounted cumulative reward
  • Exploration versus exploitation
  • Reinforcement learning techniques
  • Q-learning
  • Temporal difference learning
  • Dynamic Programming
  • Monte Carlo methods
  • Deep Q-Network
  • OpenAI Gym
  • Cart-Pole system
  • Learning phase
  • Testing phase
  • Summary
  • Chapter 16: Generative Neural Networks
  • Unsupervised learning
  • Generative models
  • Restricted Boltzmann machine
  • Boltzmann machine architecture
  • Boltzmann machine disadvantages
  • Deep Boltzmann machines
  • Autoencoder
  • Variational autoencoder
  • Generative adversarial network
  • Adversarial autoencoder
  • Feature extraction using RBM
  • Breast cancer dataset
  • Data preparation
  • Model fitting
  • Autoencoder with Keras
  • Load data
  • Keras model overview
  • Sequential model
  • Keras functional API
  • Define model architecture
  • Magenta
  • The NSynth dataset
  • Summary
  • Chapter 17: Chatbots
  • Chatbots fundamentals
  • Chatbot history
  • The imitation game
  • Eliza
  • Parry
  • Jabberwacky
  • Dr. Sbaitso
  • ALICE
  • SmarterChild
  • IBM Watson
  • Building a bot
  • Intents
  • Entities
  • Context
  • Chatbots
  • Essential requirements
  • The importance of the text
  • Word transposition
  • Checking a value against a pattern.
  • Maintaining context
  • Chatbots architecture
  • Natural language processing
  • Natural language understanding
  • Google Cloud Dialogflow
  • Dialogflow overview
  • Basics Dialogflow elements
  • Agents
  • Intent
  • Entity
  • Action
  • Context
  • Building a chatbot with Dialogflow
  • Agent creation
  • Intent definition
  • Summary
  • Index.