Codes on Euclidean spheres [electronic resource] / Thomas Ericson, Victor Zinoviev.

Codes on Euclidean spheres are often referred to as spherical codes. They are of interest from mathematical, physical and engineering points of view. Mathematically the topic belongs to the realm of algebraic combinatorics, with close connections to number theory, geometry, combinatorial theory, and...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via ScienceDirect)
Main Author: Ericson, Thomas
Other Authors: Zinoviev, Victor
Format: Electronic eBook
Language:English
Published: Amsterdam ; New York : Elsevier, 2001.
Edition:1st ed.
Series:North-Holland mathematical library ; v. 63.
Subjects:

MARC

LEADER 00000cam a2200000xa 4500
001 b10317235
003 CoU
005 20190126012616.8
006 m o d
007 cr |||||||||||
008 070802s2001 ne a ob 001 0 eng d
019 |a 53254068  |a 441804076  |a 647688689  |a 779919565  |a 961579841  |a 962694563  |a 984889985  |a 989205679  |a 1035657158  |a 1053033132 
020 |a 9780444503299 
020 |a 0444503293 
020 |a 0585473854  |q (electronic bk.) 
020 |a 9780585473857  |q (electronic bk.) 
020 |a 0080502164  |q (electronic bk.) 
020 |a 9780080502168  |q (electronic bk.) 
035 |a (OCoLC)scd162130905 
035 |a (OCoLC)162130905  |z (OCoLC)53254068  |z (OCoLC)441804076  |z (OCoLC)647688689  |z (OCoLC)779919565  |z (OCoLC)961579841  |z (OCoLC)962694563  |z (OCoLC)984889985  |z (OCoLC)989205679  |z (OCoLC)1035657158  |z (OCoLC)1053033132 
040 |a OPELS  |b eng  |e pn  |c OPELS  |d OPELS  |d OCLCQ  |d N$T  |d YDXCP  |d MERUC  |d E7B  |d IDEBK  |d TULIB  |d OCLCO  |d OCLCQ  |d OPELS  |d OCLCF  |d DEBBG  |d OCLCQ  |d EBLCP  |d COO  |d OCLCQ  |d DEBSZ  |d SUR  |d OCLCQ  |d STF  |d D6H  |d INT  |d OCLCQ 
049 |a GWRE 
050 4 |a QA166.7  |b .E75 2001eb 
100 1 |a Ericson, Thomas.  |0 http://id.loc.gov/authorities/names/n2001006962  |1 http://isni.org/isni/000000011684410X. 
245 1 0 |a Codes on Euclidean spheres  |h [electronic resource] /  |c Thomas Ericson, Victor Zinoviev. 
250 |a 1st ed. 
260 |a Amsterdam ;  |a New York :  |b Elsevier,  |c 2001. 
300 |a 1 online resource (xiii, 549 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
490 1 |a North-Holland mathematical library,  |x 0924-6509 ;  |v v. 63. 
504 |a Includes bibliographical references (pages 519-540) and index. 
505 0 |a Cover -- Contents -- Chapter 1. Introduction -- 1.1 Definitions and basic properties -- 1.2 Examples of spherical codes -- 1.3 Two basic functions -- 1.4 The Rankin bounds -- 1.5 The Simplex and the Biorthogonal codes -- 1.6 The Chabauty-Shannon-Wyner bound -- 1.7 The direct sum -- Chapter 2. The linear programming bound -- 2.1 Introduction -- 2.2 Spherical polynomials -- 2.3 The linear programming bound -- 2.4 Orthogonal polynomials -- 2.5 The Levenshtein bound -- 2.6 The Boyvalenkov-Danev-Bumova criterion -- 2.7 Properties of the Levenshtein bound -- Chapter 3. Codes in dimension n=3 -- 3.1 Introduction -- 3.2 The optimal codes -- 3.3 Additional comments -- 3.4 The Fejes Tóth bound -- 3.5 Optimality in the case M=7 -- 3.6 The Coxeter-Böröczky extension -- 3.7 Thirteen spheres -- Chapter 4. Permutation codes -- 4.1 Introduction -- 4.2 Variant 1 -- 4.3 Best variant 1 codes -- 4.4 Variant 2a -- 4.5 Variant 2b -- 4.6 Dimensionality -- 4.7 Decoding -- 4.8 General comments -- Chapter 5. Symmetric alphabets -- 5.1 Introduction -- 5.2 An introductory example -- 5.3 Binary labeling -- 5.4 The construction. 2 K 4 -- 5.5 The construction: general case -- 5.6 A simple example -- 5.7 Analysis -- 5.8 Explicit constructions -- 5.9 Unions -- 5.10 Extensions -- 5.11 Concluding remarks -- Chapter 6. Non-symmetric alphabets -- 6.1 Introduction -- 6.2 The binary balanced mapping -- 6.3 Comments -- 6.4 Unions from the CW2-construction -- 6.5 Non-symmetric ternary alphabet -- 6.6 The general balanced construction -- Chapter 7. Polyphase codes -- 7.1 Introduction -- 7.2 General properties -- 7.3 The case q = 3 -- 7.4 The case q = 4 -- 7.5 The case q = 6 -- 7.6 The case q = 8 -- 7.7 Two special constructions -- 7. 8 A general comment -- Chapter 8. Group codes -- 8.1 Introduction -- 8.2 Basic properties -- 8.3 Groups represented by matrices -- 8.4 Group codes in binary Hamming spaces -- 8.5 Group codes from binary codes -- 8.6 Dual codes and MacWilliams' identity -- 8.7 Finite reflection groups -- 8.8 Codes from finite reflection groups -- 8.9 Examples -- 8.10 Remarks on some specific codes -- Chapter 9. Distance regular spherical codes -- 9.1 Introduction -- 9.2 Association schemes -- 9.3 Metric schemes -- 9.4 Strongly regular graphs -- 9.5 The absolute bound -- 9.6 Spherical designs -- 9.7 Regular polytopes -- Chapter 10. Lattices -- 10.1 Introduction -- 10.2 Lattices -- 10.3 The root lattices -- 10.4 Sphere packings and packing bounds -- 10.5 Sphere packings and codes -- 10.6 Lattices and codes -- 10.7 Expurgated constructions -- 10.8 The Leech lattice -- 10.9 Theta functions -- 10.10 Spherical codes from lattices -- 10.11 Theta function. 
520 |a Codes on Euclidean spheres are often referred to as spherical codes. They are of interest from mathematical, physical and engineering points of view. Mathematically the topic belongs to the realm of algebraic combinatorics, with close connections to number theory, geometry, combinatorial theory, and - of course - to algebraic coding theory. The connections to physics occur within areas like crystallography and nuclear physics. In engineering spherical codes are of central importance in connection with error-control in communication systems. In that context the use of spherical codes is often referred to as "coded modulation." The book offers a first complete treatment of the mathematical theory of codes on Euclidean spheres. Many new results are published here for the first time. Engineering applications are emphasized throughout the text. The theory is illustrated by many examples. The book also contains an extensive table of best known spherical codes in dimensions 3-24, including exact constructions. 
588 0 |a Print version record. 
650 0 |a Sphere packings.  |0 http://id.loc.gov/authorities/subjects/sh2001008315. 
650 7 |a Sphere packings.  |2 fast  |0 (OCoLC)fst01129672. 
700 1 |a Zinoviev, Victor.  |0 http://id.loc.gov/authorities/names/n2001006967  |1 http://isni.org/isni/0000000116162061. 
776 0 8 |i Print version:  |a Ericson, Thomas.  |t Codes on Euclidean spheres.  |b 1st ed.  |d Amsterdam ; New York : Elsevier, 2001  |z 0444503293  |z 9780444503299  |w (DLC) 2001033122  |w (OCoLC)46641954. 
830 0 |a North-Holland mathematical library ;  |v v. 63.  |0 http://id.loc.gov/authorities/names/n84711430. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=https://www.sciencedirect.com/science/bookseries/09246509/63  |z Full Text (via ScienceDirect) 
907 |a .b10317235x  |b 03-19-20  |c 02-05-19 
998 |a web  |b 02-28-19  |c b  |d b   |e -  |f eng  |g ne   |h 0  |i 1 
907 |a .b10317235x  |b 07-02-19  |c 02-05-19 
944 |a MARS - RDA ENRICHED 
907 |a .b10317235x  |b 03-12-19  |c 02-05-19 
915 |a I 
956 |a ScienceDirect ebooks 
956 |b ScienceDirect All Books 
999 f f |i 1d223039-f5e6-513e-a2bd-bb434c81d972  |s 021e8848-1e9b-59f7-bcb4-a2e3fd8c726a 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA166.7 .E75 2001eb  |h Library of Congress classification  |i web  |n 1