|
|
|
|
LEADER |
00000cam a2200000xi 4500 |
001 |
b10322006 |
003 |
CoU |
005 |
20210806082256.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
100325s1979 nyu ob 001 0 eng d |
019 |
|
|
|a 897646576
|a 974615609
|a 974671205
|a 1100940921
|a 1162042431
|a 1255745804
|
020 |
|
|
|a 9780121229504
|q (electronic bk.)
|
020 |
|
|
|a 0121229505
|q (electronic bk.)
|
020 |
|
|
|a 9781483277882
|
020 |
|
|
|a 1483277887
|
020 |
|
|
|a 9781322470108
|
020 |
|
|
|a 1322470103
|
035 |
|
|
|a (OCoLC)scd571414414
|
035 |
|
|
|a (OCoLC)571414414
|z (OCoLC)897646576
|z (OCoLC)974615609
|z (OCoLC)974671205
|z (OCoLC)1100940921
|z (OCoLC)1162042431
|z (OCoLC)1255745804
|
037 |
|
|
|a scd9780121229504
|
040 |
|
|
|a OCLCE
|b eng
|e pn
|c OCLCE
|d OCLCQ
|d OCLCF
|d OCLCO
|d OPELS
|d EBLCP
|d CDX
|d IDEBK
|d N$T
|d YDXCP
|d DEBSZ
|d OCLCQ
|d OCLCO
|d OCLCQ
|d MERUC
|d OCLCQ
|d DEBBG
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d UKAHL
|d VLY
|d LUN
|d OCLCQ
|d INARC
|d OCLCQ
|d OCLCO
|
042 |
|
|
|a dlr
|
049 |
|
|
|a GWRE
|
050 |
|
4 |
|a QA76.9.A96
|b B68
|
100 |
1 |
|
|a Boyer, Robert S.
|0 http://id.loc.gov/authorities/names/n79073003
|1 http://isni.org/isni/0000000115692802.
|
245 |
1 |
2 |
|a A computational logic
|h [electronic resource] /
|c Robert S. Boyer and J Strother Moore.
|
260 |
|
|
|a New York :
|b Academic Press,
|c ©1979.
|
300 |
|
|
|a 1 online resource (xiv, 397 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent.
|
337 |
|
|
|a computer
|b c
|2 rdamedia.
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier.
|
490 |
1 |
|
|a ACM monograph series.
|
504 |
|
|
|a Includes bibliographical references (pages 385-387) and index.
|
505 |
0 |
|
|a Front Cover; A Computational Logic; Copyright Page; Dedication; Table of Contents; Preface; Chapter 1. Introduction; A. Motivation; B. Our Formal Theory; C. Proof Techniques; D. Examples; E. Our Mechanical Theorem-Prover; F. Artificial Intelligence or Logic?; G. Organization; Chapter 2. A Sketch of the Theory and Two Simple Examples; A. An Informal Sketch of the Theory; B.A Simple Inductive Proof; C.A More Difficult Problem; D.A More Difficult Proof; E. Summary; F. Notes; Chapter 3. A Precise Definition of the Theory; A. Syntax; B. The Theory of IF and EQUAL; C. Well-Founded Relations.
|
505 |
8 |
|
|a D. InductionE. Shells; F. Natural Numbers; G. Literal Atoms; H. Ordered Pairs; I. Definitions; J. Lexicographic Relations; K. LESSP and COUNT; L. Conclusion; Chapter 4. The Correctness of a Tautology-Checker; A. Informal Development; B. Formal Specification of the Problem; C. The Former Definition of TAUTOLOGY. CHECKER; D. The Mechanical Proofs; E. Summary; F. Notes; Chapter 5. An Overview of How We Prove Theorems; A. The Role of the User; B. Clausal Representation of Conjectures; C. The Organization of Our Heuristics; D. The Organization of Our Presentation.
|
505 |
8 |
|
|a Chapter 6. Using Type Information to Simplify FormulasA. Type Sets; B. Assuming Expressions True or False; C. Computing Type Sets; D. Type Prescriptions; E. Summary; F. Notes; Chapter 7. Using Axioms and Lemmas as Rewrite Rules; A. Directed Equalities; B. Infinite Looping; C. More General Rewrite Rules; D. An Example of Using Rewrite Rules; E. Infinite Backwards Chaining; F. Free Variables in Hypotheses; Chapter 8. Using Definitions; A. Nonrecursive Functions; B. Computing Values; C. Diving in to See; Chapter 9. Rewriting Terms and Simplifying Clauses; A. Rewriting Terms.
|
505 |
8 |
|
|a B. Simplifying ClausesC. The REVERSE Example; D. Simplification in the REVERSE Example; Chapter 10. Eliminating Destructors; A. Trading Bad Terms for Good Terms; B. The Form of Elimination Lemmas; C. The Precise Use of Elimination Lemmas; D.A Nontrivial Example; E. Multiple Destructors and Infinite Looping; F. When Elimination Is Risky; G. Destructor Elimination in the REVERSE Example; Chapter 11. Using Equalities; A. Using and Throwing Away Equalities; B. Cross-Fertilization; C.A Simple Example of Cross-Fertilization; D. The Precise Use of Equalities.
|
505 |
8 |
|
|a E. Cross-Fertilization in the REVERSE ExampleChapter 12. Generalization; A.A Simple Generalization Heuristic; B. Restricting Generalizations; C. Examples of Generalizations; D. The Precise Statement of the Generalization Heuristic; E. Generalization in the REVERSE Example; Chapter 13. Eliminating Irrelevance; A. Two Simple Checks for Irrelevance; B. The Reason for Eliminating Isolated Hypotheses; C. Elimination of Irrelevance in the REVERSE Example; Chapter 14. Induction and the Analysis of Recursive Definitions; A. Satisfying the Principle of Definition.
|
546 |
|
|
|a English.
|
588 |
0 |
|
|a Print version record.
|
650 |
|
0 |
|a Automatic theorem proving.
|0 http://id.loc.gov/authorities/subjects/sh85010111.
|
650 |
|
7 |
|a Automatic theorem proving.
|2 fast
|0 (OCoLC)fst00822777.
|
700 |
1 |
|
|a Moore, J Strother,
|d 1947-
|e author.
|0 http://id.loc.gov/authorities/names/n79073002
|1 http://isni.org/isni/0000000108971547.
|
776 |
0 |
8 |
|i Print version:
|a Boyer, Robert S.
|t Computational logic.
|d New York : Academic Press, ©1979
|w (DLC) 79051693
|w (OCoLC)5196669.
|
830 |
|
0 |
|a ACM monograph series.
|0 http://id.loc.gov/authorities/names/n83826897.
|
856 |
4 |
0 |
|u https://colorado.idm.oclc.org/login?url=https://www.sciencedirect.com/science/book/9780121229504
|z Full Text (via ScienceDirect)
|
907 |
|
|
|a .b103220069
|b 09-08-21
|c 02-05-19
|
998 |
|
|
|a web
|b 08-31-21
|c b
|d b
|e -
|f eng
|g nyu
|h 2
|i 1
|
907 |
|
|
|a .b103220069
|b 09-08-21
|c 02-05-19
|
944 |
|
|
|a MARS - RDA ENRICHED
|
915 |
|
|
|a -
|
956 |
|
|
|a ScienceDirect ebooks
|
956 |
|
|
|b ScienceDirect All Books
|
999 |
f |
f |
|i 257484f5-bc53-5b64-b547-8f9a4cff3970
|s e724660d-f739-50cc-9d88-30c68f1774c5
|
952 |
f |
f |
|p Can circulate
|a University of Colorado Boulder
|b Online
|c Online
|d Online
|e QA76.9.A96 B68
|h Library of Congress classification
|i web
|n 1
|