The bending theory of fully nonlinear beams / Angelo Marcello Tarantino, Luca Lanzoni and Federico Oyedeji Falope.

This book presents the bending theory of hyperelastic beams in the context of finite elasticity. The main difficulties in addressing this issue are due to its fully nonlinear framework, which makes no assumptions regarding the size of the deformation and displacement fields.  Despite the complexity...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Springer)
Main Authors: Tarantino, Angelo Marcello (Author), Lanzoni, Luca (Author), Falope, Federico Oyedeji (Author)
Format: eBook
Language:English
Published: Cham : Springer, [2019]
Subjects:

MARC

LEADER 00000cam a2200000xi 4500
001 b10452403
003 CoU
005 20190404053157.4
006 m o d
007 cr |||||||||||
008 190315s2019 sz a ob 000 0 eng d
019 |a 1090176240  |a 1090389456 
020 |a 9783030146764  |q (electronic bk.) 
020 |a 3030146766  |q (electronic bk.) 
020 |z 9783030146757 
020 |z 3030146758 
035 |a (OCoLC)spr1089930487 
035 |a (OCoLC)1089930487  |z (OCoLC)1090176240  |z (OCoLC)1090389456 
037 |a spr978-3-030-14676-4 
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d YDX  |d EBLCP  |d GW5XE 
049 |a GWRE 
050 4 |a QC191 
100 1 |a Tarantino, Angelo Marcello,  |e author. 
245 1 4 |a The bending theory of fully nonlinear beams /  |c Angelo Marcello Tarantino, Luca Lanzoni and Federico Oyedeji Falope. 
264 1 |a Cham :  |b Springer,  |c [2019] 
264 4 |c ©2019. 
300 |a 1 online resource :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
504 |a Includes bibliographical references. 
505 0 |a Intro; Preface; Acknowledgements; Contents; 1 Theoretical Analysis; 1.1 Introduction; 1.2 Kinematics; 1.3 Lagrangian Analysis; 1.4 Equilibrium and Numerical Checks; 1.5 Eulerian Analysis; 1.6 Transition from Nonlinear Theory to Classical Linear Theory; 1.7 Conclusive Remarks on the Theoretical Analysis; References; 2 Numerical and Experimental Analyses; 2.1 Introduction; 2.2 Experimental Identification of the Constitutive Parameters and Reference beam; 2.3 FEM Analysis; 2.4 Experimental Analysis; 2.5 Comparisons and Discussion. 
505 8 |a 2.6 Conclusive Remarks on the Numerical and Experimental AnalysesReferences; 3 Generalization to Variable Bending Moment; 3.1 Introduction; 3.2 Moment-Curvature Relationship; 3.3 Geometric Considerations on the Deformed Axis of the Beam; 3.4 Problem Formulation; 3.5 Numerical Solution; 3.6 Applications; 3.7 Conclusive Remarks; References. 
520 |a This book presents the bending theory of hyperelastic beams in the context of finite elasticity. The main difficulties in addressing this issue are due to its fully nonlinear framework, which makes no assumptions regarding the size of the deformation and displacement fields.  Despite the complexity of its mathematical formulation, the inflexion problem of nonlinear beams is frequently used in practice, and has numerous applications in the industrial, mechanical and civil sectors. Adopting a semi-inverse approach, the book formulates a three-dimensional kinematic model in which the longitudinal bending is accompanied by the transversal deformation of cross-sections. The results provided by the theoretical model are subsequently compared with those of numerical and experimental analyses. The numerical analysis is based on the finite element method (FEM), whereas a test equipment prototype was designed and fabricated for the experimental analysis. The experimental data was acquired using digital image correlation (DIC) instrumentation. These two further analyses serve to confirm the hypotheses underlying the theoretical model. In the book's closing section, the analysis is generalized to the case of variable bending moment. The governing equations then take the form of a coupled system of three equations in integral form, which can be applied to a very wide class of equilibrium problems for nonlinear beams. 
588 0 |a Online resource ; title from PDF title page (EBSCO, viewed March 18, 2019) 
650 0 |a Elasticity.  |0 http://id.loc.gov/authorities/subjects/sh85041516. 
650 0 |a Particle beams.  |0 http://id.loc.gov/authorities/subjects/sh85098361. 
700 1 |a Lanzoni, Luca,  |e author.  |0 http://id.loc.gov/authorities/names/n2007016585  |1 http://isni.org/isni/0000000040537831. 
700 1 |a Falope, Federico Oyedeji,  |e author. 
776 0 8 |c Original  |z 3030146758  |z 9783030146757  |w (OCoLC)1084329247. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-030-14676-4  |z Full Text (via Springer) 
907 |a .b104524030  |b 03-19-20  |c 04-16-19 
998 |a web  |b 04-30-19  |c b  |d b   |e -  |f eng  |g sz   |h 4  |i 1 
907 |a .b104524030  |b 07-02-19  |c 04-16-19 
944 |a MARS - RDA ENRICHED 
907 |a .b104524030  |b 04-30-19  |c 04-16-19 
915 |a I 
956 |a Springer e-books 
956 |b Springer Engineering eBooks 2019 English+International 
999 f f |i 9d0faffd-3e9a-5b24-94b7-718a897a777a  |s 3e6b28bf-cc5c-5354-abed-6c59287117b0 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QC191  |h Library of Congress classification  |i Ebooks, Prospector  |n 1