Tunable electron heating induced giant magnetoresistance in the high mobility GaAs/AlGaAs 2D electron system [electronic resource]

Saved in:
Bibliographic Details
Online Access: Online Access (via OSTI)
Format: Government Document Electronic eBook
Language:English
Published: Washington, D.C. : Oak Ridge, Tenn. : United States. Department of Energy. Office of Basic Energy Sciences ; distributed by the Office of Scientific and Technical Information, U.S. Department of Energy, 2016.
Subjects:

MARC

LEADER 00000nam a22000003u 4500
001 b10511003
003 CoU
006 m o d f
007 cr |||||||||||
008 190514e20161207||| o| f0|||||eng|d
005 20230706231244.4
035 |a (TOE)ost1430128 
035 |a (TOE)1430128 
040 |a TOE  |c TOE 
049 |a GDWR 
072 7 |a 71  |2 edbsc 
072 7 |a 75  |2 edbsc 
086 0 |a E 1.99:1430128 
245 0 0 |a Tunable electron heating induced giant magnetoresistance in the high mobility GaAs/AlGaAs 2D electron system  |h [electronic resource] 
260 |a Washington, D.C. :  |b United States. Department of Energy. Office of Basic Energy Sciences ;  |a Oak Ridge, Tenn. :  |b distributed by the Office of Scientific and Technical Information, U.S. Department of Energy,  |c 2016. 
300 |a Article No. 38516 :  |b digital, PDF file. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
500 |a Published through SciTech Connect. 
500 |a 12/07/2016. 
500 |a ": BFsrep38516" 
500 |a Scientific Reports 6 1 ISSN 2045-2322 AM. 
500 |a Zhuo Wang; R. L. Samaraweera; C. Reichl; W. Wegscheider; R. G. Mani. 
500 |a Georgia State Univ., Atlanta, GA (United States) 
520 3 |a Electron-heating induced by a tunable, supplementary dc-current (I<sub>dc</sub>) helps to vary the observed magnetoresistance in the high mobility GaAs/AlGaAs 2D electron system. The magnetoresistance at B = 0.3 T is shown to progressively change from positive to negative with increasing Idc, yielding negative giant-magnetoresistance at the lowest temperature and highest I<sub>dc</sub>. A two-term Drude model successfully fits the data at all Idc and T. The results indicate that carrier heating modifies a conductivity correction σ<sub>1</sub>, which undergoes sign reversal from positive to negative with increasing I<sub>dc</sub>, and this is responsible for the observed crossover from positive- to negative- magnetoresistance, respectively, at the highest B. 
536 |b SC0001762. 
650 7 |a Classical And Quantum Mechanics, General Physics.  |2 edbsc. 
650 7 |a Condensed Matter Physics, Superconductivity And Superfluidity.  |2 edbsc. 
710 1 |a United States.  |b Department of Energy.  |b Office of Basic Energy Sciences.  |4 spn. 
710 1 |a United States.  |b Department of Energy.  |b Office of Scientific and Technical Information.  |4 dst. 
856 4 0 |u http://www.osti.gov/scitech/biblio/1430128  |z Online Access (via OSTI) 
907 |a .b105110036  |b 03-09-23  |c 05-17-19 
998 |a web  |b 05-17-19  |c f  |d m   |e p  |f eng  |g    |h 0  |i 1 
956 |a Information bridge 
999 f f |i 6cc96d3f-001a-50ea-b984-5f6932ccd75b  |s fba4e4b6-02e7-5921-a946-5a22b4a6a9b2 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e E 1.99:1430128  |h Superintendent of Documents classification  |i web  |n 1