MARC

LEADER 00000nam a22000003u 4500
001 b10524485
003 CoU
005 20180516221505.4
006 m o d f
007 cr |||||||||||
008 190514e19971231||| o| f1|||||eng|d
035 |a (TOE)ost332743 
035 |a (TOE)332743 
040 |a TOE  |c TOE 
049 |a GDWR 
072 7 |a 66  |2 edbsc 
072 7 |a 99  |2 edbsc 
086 0 |a E 1.99: conf-9709141--proc 
086 0 |a E 1.99:sand--98-1591 
086 0 |a E 1.99: conf-9709141--proc 
088 |a conf-9709141--proc 
088 |a sand--98-1591 
245 0 0 |a 3D unstructured-mesh radiation transport codes  |h [electronic resource] 
260 |a Albuquerque, N.M. :  |b Sandia National Laboratories. ;  |a Oak Ridge, Tenn. :  |b distributed by the Office of Scientific and Technical Information, U.S. Department of Energy,  |c 1997. 
300 |a pp. 41 :  |b digital, PDF file. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
500 |a Published through SciTech Connect. 
500 |a 12/31/1997. 
500 |a "sand--98-1591" 
500 |a " conf-9709141--proc." 
500 |a "DE99000778" 
500 |a 5. joint Russian-American computational mathematics conference, Albuquerque, NM (United States), 2-5 Sep 1997. 
500 |a Morel, J. [Los Alamos National Lab., NM (United States)] 
520 3 |a Three unstructured-mesh radiation transport codes are currently being developed at Los Alamos National Laboratory. The first code is ATTILA, which uses an unstructured tetrahedral mesh in conjunction with standard Sn (discrete-ordinates) angular discretization, standard multigroup energy discretization, and linear-discontinuous spatial differencing. ATTILA solves the standard first-order form of the transport equation using source iteration in conjunction with diffusion-synthetic acceleration of the within-group source iterations. DANTE is designed to run primarily on workstations. The second code is DANTE, which uses a hybrid finite-element mesh consisting of arbitrary combinations of hexahedra, wedges, pyramids, and tetrahedra. DANTE solves several second-order self-adjoint forms of the transport equation including the even-parity equation, the odd-parity equation, and a new equation called the self-adjoint angular flux equation. DANTE also offers three angular discretization options: $S{_}n$ (discrete-ordinates), $P{_}n$ (spherical harmonics), and $SP{_}n$ (simplified spherical harmonics). DANTE is designed to run primarily on massively parallel message-passing machines, such as the ASCI-Blue machines at LANL and LLNL. The third code is PERICLES, which uses the same hybrid finite-element mesh as DANTE, but solves the standard first-order form of the transport equation rather than a second-order self-adjoint form. DANTE uses a standard $S{_}n$ discretization in angle in conjunction with trilinear-discontinuous spatial differencing, and diffusion-synthetic acceleration of the within-group source iterations. PERICLES was initially designed to run on workstations, but a version for massively parallel message-passing machines will be built. The three codes will be described in detail and computational results will be presented. 
650 7 |a Three-Dimensional Calculations.  |2 local. 
650 7 |a Radiation Transport.  |2 local. 
650 7 |a Mesh Generation.  |2 local. 
650 7 |a A Codes.  |2 local. 
650 7 |a Discrete Ordinate Method.  |2 local. 
650 7 |a Multigroup Theory.  |2 local. 
650 7 |a D Codes.  |2 local. 
650 7 |a Finite Element Method.  |2 local. 
650 7 |a Spherical Harmonics Method.  |2 local. 
650 7 |a P Codes.  |2 local. 
650 7 |a Physics.  |2 edbsc. 
650 7 |a Mathematics, Computers, Information Science, Management, Law, Miscellaneous.  |2 edbsc. 
710 2 |a Sandia National Laboratories.  |4 res. 
710 1 |a United States.  |b Department of Energy.  |b Office of Scientific and Technical Information.  |4 dst. 
856 4 0 |u http://www.osti.gov/scitech/biblio/332743  |z Online Access (via OSTI) 
907 |a .b105244855  |b 03-09-23  |c 05-20-19 
998 |a web  |b 05-20-19  |c f  |d m   |e p  |f eng  |g    |h 0  |i 1 
956 |a Information bridge 
999 f f |i 69931bfe-6e6d-5f5c-8301-b4822c5eb779  |s c4363a2c-5742-59ed-a84e-d142835b8cb7 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e E 1.99: conf-9709141--proc  |h Superintendent of Documents classification  |i web  |n 1