Fast wavelet based sparse approximate inverse preconditioner [electronic resource]

Saved in:
Bibliographic Details
Online Access: Online Access (via OSTI)
Format: Government Document Electronic eBook
Language:English
Published: Oak Ridge, Tenn. : distributed by the Office of Scientific and Technical Information, U.S. Department of Energy, 1996.
Subjects:

MARC

LEADER 00000nam a22000003u 4500
001 b10525256
003 CoU
005 20180321220631.0
006 m o d f
007 cr |||||||||||
008 190514e19961231||| o| f1|||||eng|d
035 |a (TOE)ost433357 
035 |a (TOE)433357 
040 |a TOE  |c TOE 
049 |a GDWR 
072 7 |a 99  |2 edbsc 
086 0 |a E 1.99:conf-9604167--vol.1 
086 0 |a E 1.99:conf-9604167--vol.1 
088 |a conf-9604167--vol.1 
245 0 0 |a Fast wavelet based sparse approximate inverse preconditioner  |h [electronic resource] 
260 |a Oak Ridge, Tenn. :  |b distributed by the Office of Scientific and Technical Information, U.S. Department of Energy,  |c 1996. 
300 |a pp. 10, Paper 30 :  |b digital, PDF file. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
500 |a Published through SciTech Connect. 
500 |a 12/31/1996. 
500 |a "conf-9604167--vol.1" 
500 |a "DE96015306" 
500 |a Copper Mountain conference on iterative methods, Copper Mountain, CO (United States), 9-13 Apr 1996. 
500 |a Wan, W.L. [Univ. of California, Los Angeles, CA (United States)] 
500 |a Front Range Scientific Computations, Inc., Lakewood, CO (United States) 
520 3 |a Incomplete LU factorization is a robust preconditioner for both general and PDE problems but unfortunately not easy to parallelize. Recent study of Huckle and Grote and Chow and Saad showed that sparse approximate inverse could be a potential alternative while readily parallelizable. However, for special class of matrix A that comes from elliptic PDE problems, their preconditioners are not optimal in the sense that independent of mesh size. A reason may be that no good sparse approximate inverse exists for the dense inverse matrix. Our observation is that for this kind of matrices, its inverse entries typically have piecewise smooth changes. We can take advantage of this fact and use wavelet compression techniques to construct a better sparse approximate inverse preconditioner. We shall show numerically that our approach is effective for this kind of matrices. 
650 7 |a Parallel Processing.  |2 local. 
650 7 |a Efficiency.  |2 local. 
650 7 |a Factorization.  |2 local. 
650 7 |a Iterative Methods.  |2 local. 
650 7 |a Algorithms.  |2 local. 
650 7 |a Least Square Fit.  |2 local. 
650 7 |a Green Function.  |2 local. 
650 7 |a Dirichlet Problem.  |2 local. 
650 7 |a Mathematics, Computers, Information Science, Management, Law, Miscellaneous.  |2 edbsc. 
710 1 |a United States.  |b Department of Energy.  |b Office of Scientific and Technical Information.  |4 dst. 
856 4 0 |u http://www.osti.gov/scitech/biblio/433357  |z Online Access (via OSTI) 
907 |a .b105252566  |b 03-09-23  |c 05-20-19 
998 |a web  |b 05-20-19  |c f  |d m   |e p  |f eng  |g    |h 0  |i 1 
956 |a Information bridge 
999 f f |i 102b40cd-08af-5faa-9568-5be3ca286015  |s 29423075-a837-5e84-8c5d-f2d634a59308 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e E 1.99:conf-9604167--vol.1  |h Superintendent of Documents classification  |i web  |n 1