Representations of elementary Abelian p-groups and vector bundles / David J. Benson, University of Aberdeen.

Saved in:
Bibliographic Details
Main Author: Benson, D. J. (David J.), 1955-
Format: Book
Language:English
Published: Cambridge, United Kingdom ; New York, NY, USA : Cambridge University Press, [2017]
Series:Cambridge tracts in mathematics ; 208.
Subjects:
Table of Contents:
  • 1. Modular representations and elementary abelian groups
  • 2. Cyclic groups of order p
  • 3. Background from algebraic geometry
  • 4. Jordan type
  • 5. Modules of constant Jordan type
  • 6. Vector bundles on projective space
  • 7. Chern classes
  • 8. Modules of constant Jordan type and vector bundles
  • 9. Examples
  • 10. Restrictions coming from Chern numbers
  • 11. Orlov's correspondence
  • 12. Phenomenology of modules over elementary Abelian p-groups.
  • Machine generated contents note: 1. Modular Representations and Elementary Abelian Groups
  • 1.1. Introduction
  • 1.2. Representation Type
  • 1.3. Shifted Subgroups
  • 1.4. The Language of π-Points
  • 1.5. The Stable Module Category
  • 1.6. The Derived Category
  • 1.7. Singularity Categories
  • 1.8. Cohomology of Elementary Abelian p-Groups
  • 1.9. Chouinard's Theorem, Dade's Lemma and Rank Varieties
  • 1.10. Carlson's Lζ Modules, and a Matrix Version
  • 1.11. Diagrams for Modules
  • 1.12. Tensor Products
  • 1.13. Duality
  • 1.14. Symmetric and Exterior Powers
  • 1.15. Schur Functions
  • 1.16. Schur Functors
  • 1.17. Radical Layers of k E
  • 1.18. Twisted Versions of k E
  • 2. Cyclic Groups of Order p
  • 2.1. Introduction
  • 2.2. Modules for Z/p
  • 2.3. Tensor Products
  • 2.4. Gaussian Polynomials
  • 2.5. Generalised Gaussian Polynomials and a Hook Formula
  • 2.6. λ-Rings and Representations of SL(2, C)
  • 2.7. The Representation Ring of Z/p
  • 2.8. Symmetric and Exterior Powers of Jordan Blocks
  • 2.9. Schur Functors for SL(2, C) and Z/p
  • 3. Background from Algebraic Geometry
  • 3.1. Affine Space and Affine Varieties
  • 3.2. Generic Points and Closed Points
  • 3.3. Projective Space and Projective Varieties
  • 3.4. Tangent Spaces
  • 3.5. Presheaves and Sheaves
  • 3.6. Stalks and Sheafification
  • 3.7. The Language of Schemes
  • 3.8. Sheaves of Modules
  • 3.9. Coherent Sheaves on Projective Varieties
  • 3.10. Cohomology of Sheaves
  • 4. Jordan Type
  • 4.1. Nilvarieties
  • 4.2. Matrices and Tangent Spaces
  • 4.3. A Theorem of Gerstenhaber
  • 4.4. Dominance Order and Nilpotent Jordan Types
  • 4.5. Generic and Maximal Jordan Type
  • 4.6. Tensor Products
  • 5. Modules of Constant Jordan Type
  • 5.1. Introduction and Definitions
  • 5.2. Homogeneous Modules
  • 5.3. An Exact Category
  • 5.4. Endotrivial Modules
  • 5.5. Wild Representation Type
  • 5.6. The Constant Image Property
  • 5.7. The Generic Kernel
  • 5.8. The Subquotient Rad-1R(M)/Rad2R(M)
  • 5.9. The Constant Kernel Property
  • 5.10. The Generic Image
  • 5.11. W-Modules
  • 5.12. Constant Jordan type with One Non-Projective Block
  • 5.13. Rickard's Conjecture
  • 5.14. Consequences and Variations
  • 5.15. Further Conjectures
  • 6. Vector Bundles on Projective Space
  • 6.1. Definitions and First Properties
  • 6.2. Tests for Vector Bundles
  • 6.3. Vector Bundles on Projective Space
  • 6.4. The Tangent Bundle and the Euler Sequence
  • 6.5. Homogeneity and Uniformity
  • 6.6. Monads and Subquotients
  • 6.7. The Null Correlation Bundle
  • 6.8. The Examples of Tango
  • 6.9. Cohomology of Projective Space
  • 6.10. Differential Forms and Bott's Theorem
  • 6.11. Simplicity
  • 6.12. Hilbert's Syzygy Theorem
  • 7. Chern Classes
  • 7.1. Chern Classes of Graded Modules
  • 7.2. Chern Classes of Coherent Sheaves on Pr-1
  • 7.3. Some Computations
  • 7.4. Restriction of Vector Bundles
  • 7.5. Chern Numbers of Twists and Duals
  • 7.6. Chern Roots
  • 7.7. Power Sums
  • 7.8. The Hirzebruch--Riemann--Roch Theorem
  • 7.9. Chern Numbers and the Frobenius Map
  • 8. Modules of Constant Jordan Type and Vector Bundles
  • 8.1. Introduction
  • 8.2. The Operator θ
  • 8.3. The Action of θ on Fibres
  • 8.4. The Functors Fi and Fi,j
  • 8.5. Twists and Syzygies
  • 8.6. Chern Numbers of Fi(M)
  • 8.7. The Construction: p = 2
  • 8.8. The Construction: p Odd
  • 8.9. Proof of the Realisation Theorem
  • 8.10. Functoriality
  • 8.11. Tensor Products
  • 8.12. Negative Tate Cohomology
  • 8.13. The BGG Correspondence
  • 9. Examples
  • 9.1. Modules for (Z/2)2
  • 9.2. Modules for (Z/p)2
  • 9.3. Larger Rank
  • 9.4. Nilvarieties
  • 9.5. The Tangent and Cotangent Bundles
  • 9.6. The Null Correlation Bundle, p = 2
  • 9.7. The Null Correlation Bundle, p Odd
  • 9.8. Instanton Bundles
  • 9.9. Schwarzenberger's Bundles
  • 9.10. The Examples of Tango
  • 9.11. The Horrocks--Mumford Bundle
  • 9.12. Automorphisms of the Horrocks--Mumford Bundle
  • 9.13. Realising the Horrocks--Mumford Bundle
  • 9.14. The Horrocks Parent Bundle and the Tango Bundle
  • 10. Restrictions Coming from Chern Numbers
  • 10.1. Matrices of Constant Rank
  • 10.2. Congruences on Chern Numbers
  • 10.3. Restrictions on Stable Jordan Type, p Odd
  • 10.4. Eliminating More Stable Jordan Types
  • 10.5. Restrictions on Jordan Type for p = 2
  • 10.6. Applying Hirzebruch--Riemann--Roch for p = 2: The Case m = 0
  • 10.7. Bypassing Hirzebruch--Riemann--Roch
  • 10.8. Applying and Bypassing Hirzebruch--Riemann--Roch for p = 2: The Case 1 [≤] m [≤] r - 3
  • 10.9. Nilvarieties of Constant Jordan Type [p]n for p [≥] 3
  • 10.10. Nilvarieties with a Single Jordan Block
  • 10.11. Babylonian Towers
  • 11. Orlov's Correspondence
  • 11.1. Introduction
  • 11.2. Maximal Cohen--Macaulay Modules
  • 11.3. The Orlov Correspondence
  • 11.4. The Functors
  • 11.5. An Example
  • 11.6. The Bidirectional Koszul Complex
  • 11.7. A Bimodule Resolution
  • 11.8. The Adjunction
  • 11.9. The Equivalence
  • 11.10. The Trivial Module
  • 11.11. Computer Algebra
  • 11.12. Cohomology
  • 11.13. Twisted Versions of kE
  • 12. Phenomenology of Modules over Elementary Abelian p-Groups
  • 12.1. Introduction
  • 12.2. Module Constructions
  • 12.3. Odd Primes Are More Difficult
  • 12.4. Relative Cohomology
  • 12.5. Small Modules for Quadrics, p = 2
  • 12.6. Small Modules for Quadrics, p Odd
  • 12.7. Trying to Understand the Specht Module S(33)
  • 12.8. Modules with Small Loewy Length
  • 12.9. Small Modules for (Z/p)2
  • 12.10. The Bound is Close to Sharp.