Representations of elementary Abelian p-groups and vector bundles / David J. Benson, University of Aberdeen.
Saved in:
Main Author: | |
---|---|
Format: | Book |
Language: | English |
Published: |
Cambridge, United Kingdom ; New York, NY, USA :
Cambridge University Press,
[2017]
|
Series: | Cambridge tracts in mathematics ;
208. |
Subjects: |
Table of Contents:
- 1. Modular representations and elementary abelian groups
- 2. Cyclic groups of order p
- 3. Background from algebraic geometry
- 4. Jordan type
- 5. Modules of constant Jordan type
- 6. Vector bundles on projective space
- 7. Chern classes
- 8. Modules of constant Jordan type and vector bundles
- 9. Examples
- 10. Restrictions coming from Chern numbers
- 11. Orlov's correspondence
- 12. Phenomenology of modules over elementary Abelian p-groups.
- Machine generated contents note: 1. Modular Representations and Elementary Abelian Groups
- 1.1. Introduction
- 1.2. Representation Type
- 1.3. Shifted Subgroups
- 1.4. The Language of π-Points
- 1.5. The Stable Module Category
- 1.6. The Derived Category
- 1.7. Singularity Categories
- 1.8. Cohomology of Elementary Abelian p-Groups
- 1.9. Chouinard's Theorem, Dade's Lemma and Rank Varieties
- 1.10. Carlson's Lζ Modules, and a Matrix Version
- 1.11. Diagrams for Modules
- 1.12. Tensor Products
- 1.13. Duality
- 1.14. Symmetric and Exterior Powers
- 1.15. Schur Functions
- 1.16. Schur Functors
- 1.17. Radical Layers of k E
- 1.18. Twisted Versions of k E
- 2. Cyclic Groups of Order p
- 2.1. Introduction
- 2.2. Modules for Z/p
- 2.3. Tensor Products
- 2.4. Gaussian Polynomials
- 2.5. Generalised Gaussian Polynomials and a Hook Formula
- 2.6. λ-Rings and Representations of SL(2, C)
- 2.7. The Representation Ring of Z/p
- 2.8. Symmetric and Exterior Powers of Jordan Blocks
- 2.9. Schur Functors for SL(2, C) and Z/p
- 3. Background from Algebraic Geometry
- 3.1. Affine Space and Affine Varieties
- 3.2. Generic Points and Closed Points
- 3.3. Projective Space and Projective Varieties
- 3.4. Tangent Spaces
- 3.5. Presheaves and Sheaves
- 3.6. Stalks and Sheafification
- 3.7. The Language of Schemes
- 3.8. Sheaves of Modules
- 3.9. Coherent Sheaves on Projective Varieties
- 3.10. Cohomology of Sheaves
- 4. Jordan Type
- 4.1. Nilvarieties
- 4.2. Matrices and Tangent Spaces
- 4.3. A Theorem of Gerstenhaber
- 4.4. Dominance Order and Nilpotent Jordan Types
- 4.5. Generic and Maximal Jordan Type
- 4.6. Tensor Products
- 5. Modules of Constant Jordan Type
- 5.1. Introduction and Definitions
- 5.2. Homogeneous Modules
- 5.3. An Exact Category
- 5.4. Endotrivial Modules
- 5.5. Wild Representation Type
- 5.6. The Constant Image Property
- 5.7. The Generic Kernel
- 5.8. The Subquotient Rad-1R(M)/Rad2R(M)
- 5.9. The Constant Kernel Property
- 5.10. The Generic Image
- 5.11. W-Modules
- 5.12. Constant Jordan type with One Non-Projective Block
- 5.13. Rickard's Conjecture
- 5.14. Consequences and Variations
- 5.15. Further Conjectures
- 6. Vector Bundles on Projective Space
- 6.1. Definitions and First Properties
- 6.2. Tests for Vector Bundles
- 6.3. Vector Bundles on Projective Space
- 6.4. The Tangent Bundle and the Euler Sequence
- 6.5. Homogeneity and Uniformity
- 6.6. Monads and Subquotients
- 6.7. The Null Correlation Bundle
- 6.8. The Examples of Tango
- 6.9. Cohomology of Projective Space
- 6.10. Differential Forms and Bott's Theorem
- 6.11. Simplicity
- 6.12. Hilbert's Syzygy Theorem
- 7. Chern Classes
- 7.1. Chern Classes of Graded Modules
- 7.2. Chern Classes of Coherent Sheaves on Pr-1
- 7.3. Some Computations
- 7.4. Restriction of Vector Bundles
- 7.5. Chern Numbers of Twists and Duals
- 7.6. Chern Roots
- 7.7. Power Sums
- 7.8. The Hirzebruch--Riemann--Roch Theorem
- 7.9. Chern Numbers and the Frobenius Map
- 8. Modules of Constant Jordan Type and Vector Bundles
- 8.1. Introduction
- 8.2. The Operator θ
- 8.3. The Action of θ on Fibres
- 8.4. The Functors Fi and Fi,j
- 8.5. Twists and Syzygies
- 8.6. Chern Numbers of Fi(M)
- 8.7. The Construction: p = 2
- 8.8. The Construction: p Odd
- 8.9. Proof of the Realisation Theorem
- 8.10. Functoriality
- 8.11. Tensor Products
- 8.12. Negative Tate Cohomology
- 8.13. The BGG Correspondence
- 9. Examples
- 9.1. Modules for (Z/2)2
- 9.2. Modules for (Z/p)2
- 9.3. Larger Rank
- 9.4. Nilvarieties
- 9.5. The Tangent and Cotangent Bundles
- 9.6. The Null Correlation Bundle, p = 2
- 9.7. The Null Correlation Bundle, p Odd
- 9.8. Instanton Bundles
- 9.9. Schwarzenberger's Bundles
- 9.10. The Examples of Tango
- 9.11. The Horrocks--Mumford Bundle
- 9.12. Automorphisms of the Horrocks--Mumford Bundle
- 9.13. Realising the Horrocks--Mumford Bundle
- 9.14. The Horrocks Parent Bundle and the Tango Bundle
- 10. Restrictions Coming from Chern Numbers
- 10.1. Matrices of Constant Rank
- 10.2. Congruences on Chern Numbers
- 10.3. Restrictions on Stable Jordan Type, p Odd
- 10.4. Eliminating More Stable Jordan Types
- 10.5. Restrictions on Jordan Type for p = 2
- 10.6. Applying Hirzebruch--Riemann--Roch for p = 2: The Case m = 0
- 10.7. Bypassing Hirzebruch--Riemann--Roch
- 10.8. Applying and Bypassing Hirzebruch--Riemann--Roch for p = 2: The Case 1 [≤] m [≤] r - 3
- 10.9. Nilvarieties of Constant Jordan Type [p]n for p [≥] 3
- 10.10. Nilvarieties with a Single Jordan Block
- 10.11. Babylonian Towers
- 11. Orlov's Correspondence
- 11.1. Introduction
- 11.2. Maximal Cohen--Macaulay Modules
- 11.3. The Orlov Correspondence
- 11.4. The Functors
- 11.5. An Example
- 11.6. The Bidirectional Koszul Complex
- 11.7. A Bimodule Resolution
- 11.8. The Adjunction
- 11.9. The Equivalence
- 11.10. The Trivial Module
- 11.11. Computer Algebra
- 11.12. Cohomology
- 11.13. Twisted Versions of kE
- 12. Phenomenology of Modules over Elementary Abelian p-Groups
- 12.1. Introduction
- 12.2. Module Constructions
- 12.3. Odd Primes Are More Difficult
- 12.4. Relative Cohomology
- 12.5. Small Modules for Quadrics, p = 2
- 12.6. Small Modules for Quadrics, p Odd
- 12.7. Trying to Understand the Specht Module S(33)
- 12.8. Modules with Small Loewy Length
- 12.9. Small Modules for (Z/p)2
- 12.10. The Bound is Close to Sharp.