Classical and Multilinear Harmonic Analysis.
This contemporary graduate-level text in harmonic analysis introduces the reader to a wide array of analytical results and techniques.
Saved in:
Online Access: |
Full Text (via ProQuest) |
---|---|
Main Author: | |
Other Authors: | |
Format: | eBook |
Language: | English |
Published: |
Cambridge :
Cambridge University Press,
2013.
|
Series: | Cambridge studies in advanced mathematics.
|
Subjects: |
MARC
LEADER | 00000cam a2200000Mu 4500 | ||
---|---|---|---|
001 | b10707647 | ||
003 | CoU | ||
005 | 20190629054346.5 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 130109s2013 enk o 000 0 eng d | ||
020 | |a 9781139616744 | ||
020 | |a 1139616749 | ||
035 | |a (OCoLC)ebqac823724196 | ||
035 | |a (OCoLC)823724196 | ||
037 | |a ebqac1099945 | ||
040 | |a EBLCP |b eng |e pn |c EBLCP |d OCLCO |d OCLCQ |d DEBSZ |d OCLCO |d OCLCQ |d OCLCF | ||
049 | |a GWRE | ||
050 | 4 | |a QA403 .M87 2013 | |
100 | 1 | |a Muscalu, Camil. | |
245 | 1 | 0 | |a Classical and Multilinear Harmonic Analysis. |
260 | |a Cambridge : |b Cambridge University Press, |c 2013. | ||
300 | |a 1 online resource (342 pages) | ||
336 | |a text |b txt |2 rdacontent. | ||
337 | |a computer |b c |2 rdamedia. | ||
338 | |a online resource |b cr |2 rdacarrier. | ||
490 | 1 | |a Cambridge Studies in Advanced Mathematics. | |
505 | 0 | |a Preface; Acknowledgements; 1 Leibnitz rules and the generalized Korteweg-de Vries equation; 1.1 Conserved quantities; 1.2 Dispersive estimates for the linear equation; 1.3 Dispersive estimates for the nonlinear equation; 1.4 Wave packets and phase-space portraits; 1.5 The phase-space portraits of e2ix2 and e2ix3; 1.6 Asymptotics for the Airy function; Notes; Problems; 2 Classical paraproducts; 2.1 Paraproducts; 2.2 Discretized paraproducts; 2.3 Discretized Littlewood-Paley square-function operator; 2.4 Dualization of quasi-norms; 2.5 Two particular cases of Theorem 2.3. 2.6 The John -- Nirenberg inequality2.7 L1" sizes and L1" energies; 2.8 Stopping-time decompositions; 2.9 Generic estimate of the trilinear paraproduct form; 2.10 Estimates for sizes and energies; 2.11 Lp bounds for the first discrete model; 2.12 Lp bounds for the second discrete model; 2.13 The general Coifman-Meyer theorem; 2.14 Bilinear pseudodifferential operators; Notes; Problems; 3 Paraproducts on polydisks; 3.1 Biparameter paraproducts; 3.2 Hybrid square and maximal functions; 3.3 Biparameter BMO; 3.4 Carleson's counterexample; 3.5 Proof of Theorem 3.1; part 1; 3.6 Journ ́e's lemma. 3.7 Proof of Theorem 3.1 part 2; 3.8 Multiparameter paraproducts; 3.9 Proof of Theorem 3.1; a simplification; 3.10 Proof of the generic decomposition; Notes; Problems; 4 Calder ́on commutators and the Cauchy integral; 4.1 History; 4.2 The first Calder ́on commutator; 4.3 Generalizations; 4.4 The Cauchy integral on Lipschitz curves; 4.5 Generalizations; Notes; Problems; 5 Iterated Fourier series and physical reality; 5.1 Iterated Fourier series; 5.2 Physical reality; 5.3 Generic Lp AKNS systems for 1p <2; 5.4 Generic L2 AKNS systems; Notes; Problems; 6 The bilinear Hilbert transform. 6.1 Discretization6.2 The particular scale-1 case of Theorem 6.5; 6.3 Trees, L2 sizes, and L2 energies; 6.4 Proof of Theorem 6.5; 6.5 Bessel-type inequalities; 6.6 Stopping-time decompositions; 6.7 Generic estimate of the trilinear BHT form; 6.8 The 1/2 <r <2/3 counterexample; 6.9 The bilinear Hilbert transform on polydisks; Notes; Problems; 7 Almost everywhere convergence of Fourier series; 7.1 Reduction to the continuous case; 7.2 Discrete models; 7.3 Proof of Theorem 7.2 in the scale-1 case; 7.4 Estimating a single tree; 7.5 Additional sizes and energies; 7.6 Proof of Theorem 7.2. 7.7 Estimates for Carleson energies7.8 Stopping-time decompositions; 7.9 Generic estimate of the bilinear Carleson form; 7.10 Fefferman's counterexample; Notes; Problems; 8 Flag paraproducts; 8.1 Generic flag paraproducts; 8.2 Mollifying a product of two paraproducts; 8.3 Flag paraproducts and quadratic NLS; 8.4 Flag paraproducts and U-statistics; 8.5 Discrete operators and interpolation; 8.6 Reduction to the model operators; 8.7 Rewriting the 4-linear forms; 8.8 The new size and energy estimates; 8.9 Estimates for T1 and T1,l0 near A4; 8.10 Estimates for T1*3 and T*31,l0 near A31 and A32. 8.11 Upper bounds for flag sizes. | |
520 | |a This contemporary graduate-level text in harmonic analysis introduces the reader to a wide array of analytical results and techniques. | ||
588 | 0 | |a Print version record. | |
650 | 0 | |a Harmonic analysis. | |
650 | 0 | |a Mathematical analysis. | |
650 | 0 | |a Mathematics. | |
650 | 0 | |a Nonlinear equation. | |
650 | 7 | |a Harmonic analysis. |2 fast |0 (OCoLC)fst00951490. | |
650 | 7 | |a Mathematical analysis. |2 fast |0 (OCoLC)fst01012068. | |
650 | 7 | |a Mathematics. |2 fast |0 (OCoLC)fst01012163. | |
700 | 1 | |a Schlag, Wilhelm. | |
776 | 0 | 8 | |i Print version: |a Muscalu, Camil. |t Classical and Multilinear Harmonic Analysis. |d Cambridge : Cambridge University Press, ©2013 |z 9781107031821. |
830 | 0 | |a Cambridge studies in advanced mathematics. | |
856 | 4 | 0 | |u https://ebookcentral.proquest.com/lib/ucb/detail.action?docID=1099945 |z Full Text (via ProQuest) |
907 | |a .b107076470 |b 07-03-19 |c 07-03-19 | ||
998 | |a web |b - - |c f |d b |e z |f eng |g enk |h 0 |i 1 | ||
915 | |a M | ||
956 | |a Ebook Central Academic Complete | ||
956 | |b Ebook Central Academic Complete | ||
999 | f | f | |i 47406cbb-986d-5816-8a1f-972932268d69 |s 3f00dda2-eb09-5c55-8792-dcedb1868fa6 |
952 | f | f | |p Can circulate |a University of Colorado Boulder |b Online |c Online |d Online |e QA403 .M87 2013 |h Library of Congress classification |i web |n 1 |