Classical and Multilinear Harmonic Analysis.

This contemporary graduate-level text in harmonic analysis introduces the reader to a wide array of analytical results and techniques.

Saved in:
Bibliographic Details
Online Access: Full Text (via ProQuest)
Main Author: Muscalu, Camil
Other Authors: Schlag, Wilhelm
Format: eBook
Language:English
Published: Cambridge : Cambridge University Press, 2013.
Series:Cambridge studies in advanced mathematics.
Subjects:

MARC

LEADER 00000cam a2200000Mu 4500
001 b10707647
003 CoU
005 20190629054346.5
006 m o d
007 cr |||||||||||
008 130109s2013 enk o 000 0 eng d
020 |a 9781139616744 
020 |a 1139616749 
035 |a (OCoLC)ebqac823724196 
035 |a (OCoLC)823724196 
037 |a ebqac1099945 
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCO  |d OCLCQ  |d DEBSZ  |d OCLCO  |d OCLCQ  |d OCLCF 
049 |a GWRE 
050 4 |a QA403 .M87 2013 
100 1 |a Muscalu, Camil. 
245 1 0 |a Classical and Multilinear Harmonic Analysis. 
260 |a Cambridge :  |b Cambridge University Press,  |c 2013. 
300 |a 1 online resource (342 pages) 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
490 1 |a Cambridge Studies in Advanced Mathematics. 
505 0 |a Preface; Acknowledgements; 1 Leibnitz rules and the generalized Korteweg-de Vries equation; 1.1 Conserved quantities; 1.2 Dispersive estimates for the linear equation; 1.3 Dispersive estimates for the nonlinear equation; 1.4 Wave packets and phase-space portraits; 1.5 The phase-space portraits of e2ix2 and e2ix3; 1.6 Asymptotics for the Airy function; Notes; Problems; 2 Classical paraproducts; 2.1 Paraproducts; 2.2 Discretized paraproducts; 2.3 Discretized Littlewood-Paley square-function operator; 2.4 Dualization of quasi-norms; 2.5 Two particular cases of Theorem 2.3. 2.6 The John -- Nirenberg inequality2.7 L1" sizes and L1" energies; 2.8 Stopping-time decompositions; 2.9 Generic estimate of the trilinear paraproduct form; 2.10 Estimates for sizes and energies; 2.11 Lp bounds for the first discrete model; 2.12 Lp bounds for the second discrete model; 2.13 The general Coifman-Meyer theorem; 2.14 Bilinear pseudodifferential operators; Notes; Problems; 3 Paraproducts on polydisks; 3.1 Biparameter paraproducts; 3.2 Hybrid square and maximal functions; 3.3 Biparameter BMO; 3.4 Carleson's counterexample; 3.5 Proof of Theorem 3.1; part 1; 3.6 Journ ́e's lemma. 3.7 Proof of Theorem 3.1 part 2; 3.8 Multiparameter paraproducts; 3.9 Proof of Theorem 3.1; a simplification; 3.10 Proof of the generic decomposition; Notes; Problems; 4 Calder ́on commutators and the Cauchy integral; 4.1 History; 4.2 The first Calder ́on commutator; 4.3 Generalizations; 4.4 The Cauchy integral on Lipschitz curves; 4.5 Generalizations; Notes; Problems; 5 Iterated Fourier series and physical reality; 5.1 Iterated Fourier series; 5.2 Physical reality; 5.3 Generic Lp AKNS systems for 1p <2; 5.4 Generic L2 AKNS systems; Notes; Problems; 6 The bilinear Hilbert transform. 6.1 Discretization6.2 The particular scale-1 case of Theorem 6.5; 6.3 Trees, L2 sizes, and L2 energies; 6.4 Proof of Theorem 6.5; 6.5 Bessel-type inequalities; 6.6 Stopping-time decompositions; 6.7 Generic estimate of the trilinear BHT form; 6.8 The 1/2 <r <2/3 counterexample; 6.9 The bilinear Hilbert transform on polydisks; Notes; Problems; 7 Almost everywhere convergence of Fourier series; 7.1 Reduction to the continuous case; 7.2 Discrete models; 7.3 Proof of Theorem 7.2 in the scale-1 case; 7.4 Estimating a single tree; 7.5 Additional sizes and energies; 7.6 Proof of Theorem 7.2. 7.7 Estimates for Carleson energies7.8 Stopping-time decompositions; 7.9 Generic estimate of the bilinear Carleson form; 7.10 Fefferman's counterexample; Notes; Problems; 8 Flag paraproducts; 8.1 Generic flag paraproducts; 8.2 Mollifying a product of two paraproducts; 8.3 Flag paraproducts and quadratic NLS; 8.4 Flag paraproducts and U-statistics; 8.5 Discrete operators and interpolation; 8.6 Reduction to the model operators; 8.7 Rewriting the 4-linear forms; 8.8 The new size and energy estimates; 8.9 Estimates for T1 and T1,l0 near A4; 8.10 Estimates for T1*3 and T*31,l0 near A31 and A32. 8.11 Upper bounds for flag sizes. 
520 |a This contemporary graduate-level text in harmonic analysis introduces the reader to a wide array of analytical results and techniques. 
588 0 |a Print version record. 
650 0 |a Harmonic analysis. 
650 0 |a Mathematical analysis. 
650 0 |a Mathematics. 
650 0 |a Nonlinear equation. 
650 7 |a Harmonic analysis.  |2 fast  |0 (OCoLC)fst00951490. 
650 7 |a Mathematical analysis.  |2 fast  |0 (OCoLC)fst01012068. 
650 7 |a Mathematics.  |2 fast  |0 (OCoLC)fst01012163. 
700 1 |a Schlag, Wilhelm. 
776 0 8 |i Print version:  |a Muscalu, Camil.  |t Classical and Multilinear Harmonic Analysis.  |d Cambridge : Cambridge University Press, ©2013  |z 9781107031821. 
830 0 |a Cambridge studies in advanced mathematics. 
856 4 0 |u https://ebookcentral.proquest.com/lib/ucb/detail.action?docID=1099945  |z Full Text (via ProQuest) 
907 |a .b107076470  |b 07-03-19  |c 07-03-19 
998 |a web  |b  - -   |c f  |d b   |e z  |f eng  |g enk  |h 0  |i 1 
915 |a M 
956 |a Ebook Central Academic Complete 
956 |b Ebook Central Academic Complete 
999 f f |i 47406cbb-986d-5816-8a1f-972932268d69  |s 3f00dda2-eb09-5c55-8792-dcedb1868fa6 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA403 .M87 2013  |h Library of Congress classification  |i web  |n 1