Frailty models in survival analysis / Andreas Wienke.

The concept of frailty offers a convenient way to introduce unobserved heterogeneity and associations into models for survival data. In its simplest form, frailty is an unobserved random proportionality factor that modifies the hazard function of an individual or a group of related individuals. Frai...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via ProQuest)
Main Author: Wienke, Andreas
Format: Electronic eBook
Language:English
Published: Boca Raton : CRC Press, ©2011.
Series:Chapman & Hall/CRC biostatistics series.
Subjects:

MARC

LEADER 00000cam a2200000 a 4500
001 b10776793
005 20240126125653.0
006 m o d
007 cr |||||||||||
008 101109s2011 flua ob 001 0 eng d
010 |a  2010021869 
015 |a GBB033747  |2 bnb 
016 7 |a 015500020  |2 Uk 
016 7 |a 018381757  |2 Uk 
019 |a 1065672646  |a 1129366722 
020 |a 9781420073911  |q (ebook-pdf) 
020 |a 1420073915  |q (ebook-pdf) 
020 |z 9781420073881  |q (hardcover ;  |q alk. paper) 
020 |z 1420073885  |q (hardcover ;  |q alk. paper) 
029 1 |a DEBSZ  |b 379316994 
029 1 |a DEBSZ  |b 445568739 
029 1 |a NZ1  |b 13760957 
029 1 |a UKMGB  |b 018381757 
035 |a (OCoLC)ebqac680036278 
035 |a (OCoLC)680036278  |z (OCoLC)1065672646  |z (OCoLC)1129366722 
037 |a ebqac581728 
040 |a N$T  |b eng  |e pn  |c N$T  |d YDXCP  |d EBLCP  |d I8H  |d OSU  |d OCLCQ  |d MHW  |d OCLCQ  |d OHS  |d OCLCQ  |d DEBSZ  |d UIU  |d OCLCQ  |d OCLCO  |d IDEBK  |d OCLCQ  |d OCLCA  |d OCLCQ  |d MERER  |d OCLCQ  |d OCLCO  |d OCLCA  |d OCLCF  |d INT  |d AU@  |d OCLCO  |d OCLCQ  |d UKMGB  |d OCLCO  |d WYU  |d OCLCA  |d YDX  |d OCLCQ  |d OCLCO  |d UKAHL  |d OCLCQ  |d OCLCA  |d VT2  |d OCLCA  |d OCLCQ  |d K6U  |d OCLCO  |d OCLCQ  |d OCL  |d SFB  |d OCLCQ  |d OCLCO  |d OCLCQ 
049 |a GWRE 
050 4 |a QA280  |b .W54 2011eb 
060 4 |a QA 280 
084 |a 31.80  |2 bcl 
100 1 |a Wienke, Andreas. 
245 1 0 |a Frailty models in survival analysis /  |c Andreas Wienke. 
260 |a Boca Raton :  |b CRC Press,  |c ©2011. 
300 |a 1 online resource (xxi, 301 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Chapman & Hall/CRC biostatistics series 
520 |a The concept of frailty offers a convenient way to introduce unobserved heterogeneity and associations into models for survival data. In its simplest form, frailty is an unobserved random proportionality factor that modifies the hazard function of an individual or a group of related individuals. Frailty Models in Survival Analysis presents a comprehensive overview of the fundamental approaches in the area of frailty models. The book extensively explores how univariate frailty models can represent unobserved heterogeneity. It also emphasizes correlated frailty models as extensions of univariate and shared frailty models. The author analyzes similarities and differences between frailty and copula models; discusses problems related to frailty models, such as tests for homogeneity; and describes parametric and semiparametric models using both frequentist and Bayesian approaches. He also shows how to apply the models to real data using the statistical packages of R, SAS, and Stata. The appendix provides the technical mathematical results used throughout. Written in nontechnical terms accessible to nonspecialists, this book explains the basic ideas in frailty modeling and statistical techniques, with a focus on real-world data application and interpretation of the results. By applying several models to the same data, it allows for the comparison of their advantages and limitations under varying model assumptions. The book also employs simulations to analyze the finite sample size performance of the models.--From the publisher's website. 
504 |a Includes bibliographical references and index. 
505 0 |a Front cover; Contents; List of Tables; List of Figures; Preface; Chapter 1: Introduction; Chapter 2: Survival Analysis; Chapter 3: Univariate Frailty Models; Chapter 4: Shared Frailty Models; Chapter 5: Correlated Frailty Models; Chapter 6: Copula Models; Appendix A; References; Back cover. 
588 0 |a Print version record. 
650 0 |a Failure time data analysis  |x Mathematics. 
650 0 |a Survival analysis (Biometry)  |x Mathematics. 
650 0 |a Mortality  |x Mathematical models. 
650 0 |a Demography  |x Mathematics. 
650 0 |a Mathematical models. 
650 0 |a Survival analysis (Biometry) 
650 0 |a Mortality. 
650 0 |a Demography. 
650 7 |a Survival analysis (Biometry)  |2 fast 
650 7 |a Mortality  |2 fast 
650 7 |a Mathematical models  |2 fast 
650 7 |a Demography  |2 fast 
650 7 |a Demography  |x Mathematics  |2 fast 
650 7 |a Mortality  |x Mathematical models  |2 fast 
776 0 8 |i Print version:  |a Wienke, Andreas.  |t Frailty models in survival analysis.  |d Boca Raton, FL : CRC Press, ©2011  |z 9781420073881  |w (DLC) 2010021869  |w (OCoLC)640916554 
830 0 |a Chapman & Hall/CRC biostatistics series. 
856 4 0 |u https://ebookcentral.proquest.com/lib/ucb/detail.action?docID=581728  |z Full Text (via ProQuest) 
915 |a - 
956 |a Ebook Central Academic Complete 
956 |b Ebook Central Academic Complete 
994 |a 92  |b COD 
998 |b WorldCat record encoding level change 
999 f f |i ba184865-11b7-5a81-b6d5-2d78ba7a4a35  |s aba9bed0-f752-57fd-ac87-7f5791de9cf6 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA280 .W54 2011eb  |h Library of Congress classification  |i web  |n 1