Data Clustering : Algorithms and Applications.

Research on the problem of clustering tends to be fragmented across the pattern recognition, database, data mining, and machine learning communities. Addressing this problem in a unified way, Data Clustering: Algorithms and Applications provides complete coverage of the entire area of clustering, fr...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via ProQuest)
Main Author: Aggarwal, Charu C.
Format: Electronic eBook
Language:English
Published: Hoboken : CRC Press, 2013.
Series:Chapman & Hall/CRC data mining and knowledge discovery series.
Subjects:

MARC

LEADER 00000cam a2200000 a 4500
001 b10782676
006 m o d
007 cr |||||||||||
008 130824s2013 xx ob 001 0 eng d
005 20240126125653.0
019 |a 966889986  |a 970032205  |a 1014402016  |a 1029683968  |a 1029777382  |a 1030265261  |a 1040680884  |a 1044873143 
020 |a 9781466558229  |q (electronic bk.) 
020 |a 1466558229  |q (electronic bk.) 
029 1 |a AU@  |b 000055913585 
029 1 |a DEBSZ  |b 426972066 
029 1 |a DEBSZ  |b 445579145 
029 1 |a GBVCP  |b 783425066 
029 1 |a DKDLA  |b 820120-katalog:999927612305765 
035 |a (OCoLC)ebqac856870768 
035 |a (OCoLC)856870768  |z (OCoLC)966889986  |z (OCoLC)970032205  |z (OCoLC)1014402016  |z (OCoLC)1029683968  |z (OCoLC)1029777382  |z (OCoLC)1030265261  |z (OCoLC)1040680884  |z (OCoLC)1044873143 
037 |a ebqac1355921 
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCO  |d YDXCP  |d OHS  |d OCLCO  |d CUS  |d N$T  |d OCLCF  |d OCLCQ  |d OCLCO  |d DEBSZ  |d NLGGC  |d OCLCQ  |d YDX  |d OCLCO  |d OCLCA  |d OCLCO  |d OCLCQ  |d MERUC  |d OCLCO  |d OCLCQ  |d OCLCO  |d IUL  |d OCLCO  |d IUP  |d OCLCO  |d OCLCA  |d MERER  |d OCLCO  |d OCLCQ  |d OCLCO  |d UUM  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d AU@  |d OCLCO  |d OCLCQ  |d OCLCA  |d OCLCQ  |d OCLCO  |d OCLCQ  |d SFB  |d OCLCQ  |d OCLCO  |d OCLCQ 
049 |a GWRE 
050 4 |a QA278 .D294 2014 
060 4 |a QA 278 
100 1 |a Aggarwal, Charu C. 
245 1 0 |a Data Clustering :  |b Algorithms and Applications. 
260 |a Hoboken :  |b CRC Press,  |c 2013. 
300 |a 1 online resource (648 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Chapman & Hall/CRC Data Mining and Knowledge Discovery Series 
588 0 |a Print version record. 
504 |a Includes bibliographical references and index. 
505 0 |a Front Cover; Contents; Preface; Editor Biographies; Contributors; Chapter 1: An Introduction to Cluster Analysis; Chapter 2: Feature Selection for Clustering: A Review; Chapter 3: Probabilistic Models for Clustering; Chapter 4: A Survey of Partitional and Hierarchical Clustering Algorithms; Chapter 5: Density-Based Clustering; Chapter 6: Grid-Based Clustering; Chapter 7: Nonnegative Matrix Factorizations for Clustering: A Survey; Chapter 8: Spectral Clustering; Chapter 9: Clustering High-Dimensional Data; Chapter 10: A Survey of Stream Clustering Algorithms; Chapter 11: Big Data Clustering. 
505 8 |a Chapter 12: Clustering Categorical DataChapter 13: Document Clustering: The Next Frontier; Chapter 14 : Clustering Multimedia Data; Chapter 15: Time-Series Data Clustering; Chapter 16: Clustering Biological Data; Chapter 17: Network Clustering; Chapter 18: A Survey of Uncertain Data Clustering Algorithms; Chapter 19: Concepts of Visual and Interactive Clustering; Chapter 20: Semisupervised Clustering; Chapter 21: Alternative Clustering Analysis: A Review; Chapter 22 : Cluster Ensembles: Theory and Applications; Chapter 23: Clustering ValidationMeasures. 
505 8 |a Chapter 24: Educational and Software Resources for DataClusteringColor Inserts; Back Cover. 
520 |a Research on the problem of clustering tends to be fragmented across the pattern recognition, database, data mining, and machine learning communities. Addressing this problem in a unified way, Data Clustering: Algorithms and Applications provides complete coverage of the entire area of clustering, from basic methods to more refined and complex data clustering approaches. It pays special attention to recent issues in graphs, social networks, and other domains. The book focuses on three primary aspects of data clustering: Methods, describing key techniques commonly used for clustering, such as fea. 
650 0 |a Document clustering. 
650 0 |a Cluster analysis. 
650 0 |a Data mining. 
650 0 |a Machine theory. 
650 0 |a File organization (Computer science) 
650 7 |a Cluster analysis  |2 fast 
650 7 |a Data mining  |2 fast 
650 7 |a Document clustering  |2 fast 
650 7 |a File organization (Computer science)  |2 fast 
650 7 |a Machine theory  |2 fast 
776 0 8 |i Print version:  |a Aggarwal, Charu C.  |t Data Clustering : Algorithms and Applications.  |d Hoboken : CRC Press, ©2013  |z 9781466558212 
830 0 |a Chapman & Hall/CRC data mining and knowledge discovery series. 
856 4 0 |u https://ebookcentral.proquest.com/lib/ucb/detail.action?docID=1355921  |z Full Text (via ProQuest) 
915 |a - 
956 |a Ebook Central Academic Complete 
956 |b Ebook Central Academic Complete 
994 |a 92  |b COD 
998 |b WorldCat record encoding level change 
999 f f |i b04af885-19ce-51e0-99c4-9d0755db9740  |s 88eaf877-fae4-5ac7-b82c-de5834f3c895 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA278 .D294 2014  |h Library of Congress classification  |i web  |n 1