Bayesian statistics the fun way : understanding statistics and probability with Star Wars, LEGO, and rubber ducks / by Will Kurt.

"An introduction to Bayesian statistics with simple and pop culture-based explanations. Topics covered include measuring your own uncertainty in a belief, applying Bayes' theorem, and calculating distributions"--

Saved in:
Bibliographic Details
Online Access: Full Text (via O'Reilly/Safari)
Main Author: Kurt, Will (Author)
Format: eBook
Language:English
Published: San Francisco : No Starch Press, Inc., [2019]
Subjects:

MARC

LEADER 00000cam a2200000 i 4500
001 b10852560
006 m o d
007 cr |||||||||||
008 190717s2019 caua ob 001 0 eng d
005 20240829145917.8
019 |a 1162492752 
020 |a 1098122496 
020 |a 9781098122492 
020 |a 1593279574 
020 |a 9781593279578 
020 |z 9781593279561 
029 1 |a CHNEW  |b 001063934 
029 1 |a CHVBK  |b 575145072 
035 |a (OCoLC)safo1108874742 
035 |a (OCoLC)1108874742  |z (OCoLC)1162492752 
037 |a safo9781098122492 
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d EBLCP  |d COO  |d OCLCQ  |d VLY  |d OCLCQ  |d COO  |d VFL  |d UKAHL  |d OCLCQ  |d OCLCO  |d KSU  |d OCLCQ  |d OCLCO 
049 |a GWRE 
050 4 |a QA279.5  |b .K87 2019 
100 1 |a Kurt, Will,  |e author. 
245 1 0 |a Bayesian statistics the fun way :  |b understanding statistics and probability with Star Wars, LEGO, and rubber ducks /  |c by Will Kurt. 
264 1 |a San Francisco :  |b No Starch Press, Inc.,  |c [2019] 
264 4 |c ©2019 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a volume  |b nc  |2 rdacarrier 
588 0 |a Print version record. 
500 |a Includes index. 
505 0 |a Part 1. Introduction to probability -- Ch. 1. Bayesian thinking and everyday reasoning -- Ch. 2. Measuring uncertainty -- Ch. 3. The logic of uncertainty -- Ch. 4. Creating a binomial probability distribution -- Ch. 5. The beta distribution -- Part 2. Bayesian probability and prior probabilities -- Ch. 6. Conditional probability -- Ch. 7. Bayes' theorem with LEGO -- Ch. 8. The prior, likelihood, and posterior of Bayes' theorem -- Ch. 9. Bayesian priors and working with probability distributions -- Part 3. Parameter estimation -- Ch. 10. Introduction to averaging and parameter estimation -- Ch. 11. Measuring the spread of our data -- Ch. 12. The normal distribution -- Ch. 13. Tools of parameter estimation : the PDF, CDF, and Quantile function -- Ch. 14. Parameter estimation with prior probabilities -- Part 4. Hypothesis testing : the heart of statistics -- Ch. 15. From parameter estimation to hypothesis testing : building a Bayesian A/B test -- Ch. 16. Introduction to the Bayes factor and posterior odds : the competition of ideas -- Ch. 17. Bayesian reasoning in the twilight zone -- Ch. 18. When data doesn't convince you -- Ch. 19. From hypothesis testing to parameter estimation -- Appendix A: A quick introduction to R -- Appendix B: Enough calculus to get by. 
505 0 |a Intro; Brief Contents; Contents in Detail; Acknowledgments; Introduction; Why Learn Statistics?; What Is "Bayesian" Statistics?; What's in This Book; Part I: Introduction to Probability; Part II: Bayesian Probability and Prior Probabilities; Part III: Parameter Estimation; Part IV: Hypothesis Testing: The Heart of Statistics; Background for Reading the Book; Now Off on Your Adventure!; Part I: Introduction to Probability; Chapter 1: Bayesian Thinking and Everyday Reasoning; Reasoning About Strange Experiences; Observing Data; Holding Prior Beliefs and Conditioning Probabilities 
505 8 |a Forming a HypothesisSpotting Hypotheses in Everyday Speech; Gathering More Evidence and Updating Your Beliefs; Comparing Hypotheses; Data Informs Belief; Belief Should Not Inform Data; Wrapping Up; Exercises; Chapter 2: Measuring Uncertainty; What Is a Probability?; Calculating Probabilities by Counting Outcomes of Events; Calculating Probabilities as Ratios of Beliefs; Using Odds to Determine Probability; Solving for the Probabilities; Measuring Beliefs in a Coin Toss; Wrapping Up; Exercises; Chapter 3: The Logic of Uncertainty; Combining Probabilities with AND 
505 8 |a Solving a Combination of Two ProbabilitiesApplying the Product Rule of Probability; Example: Calculating the Probability of Being Late; Combining Probabilities with OR; Calculating OR for Mutually Exclusive Events; Using the Sum Rule for Non-Mutually Exclusive Events; Example: Calculating the Probability of Getting a Hefty Fine; Wrapping Up; Exercises; Chapter 4: Creating a Binomial Probability Distribution; Structure of a Binomial Distribution; Understanding and Abstracting Out the Details of Our Problem; Counting Our Outcomes with the Binomial Coefficient 
505 8 |a Combinatorics: Advanced Counting with the Binomial CoefficientCalculating the Probability of the Desired Outcome; Example: Gacha Games; Wrapping Up; Exercises; Chapter 5: The Beta Distribution; A Strange Scenario: Getting the Data; Distinguishing Probability, Statistics, and Inference; Collecting Data; Calculating the Probability of Probabilities; The Beta Distribution; Breaking Down the Probability Density Function; Applying the Probability Density Function to Our Problem; Quantifying Continuous Distributions with Integration; Reverse-Engineering the Gacha Game; Wrapping Up; Exercises 
505 8 |a Part II: Bayesian Probability and Prior ProbabilitiesChapter 6: Conditional Probability; Introducing Conditional Probability; Why Conditional Probabilities Are Important; Dependence and the Revised Rules of Probability; Conditional Probabilities in Reverse and Bayes' Theorem; Introducing Bayes' Theorem; Wrapping Up; Exercises; Chapter 7: Bayes' Theorem with LEGO; Working Out Conditional Probabilities Visually; Working Through the Math; Wrapping Up; Exercises; Chapter 8: The Prior, Likelihood, and Posterior of Bayes' Theorem; The Three Parts; Investigating the Scene of a Crime 
520 |a "An introduction to Bayesian statistics with simple and pop culture-based explanations. Topics covered include measuring your own uncertainty in a belief, applying Bayes' theorem, and calculating distributions"--  |c Provided by publisher 
504 |a Includes bibliographical references and index. 
650 0 |a Bayesian statistical decision theory. 
650 0 |a Probabilities. 
650 7 |a Bayesian statistical decision theory  |2 fast 
650 7 |a Probabilities  |2 fast 
776 0 8 |i Print version:  |a Kurt, Will.  |t Bayesian statistics the fun way.  |d San Francisco : No Starch Press, Inc., [2019]  |z 9781593279561  |w (DLC) 2019020743  |w (OCoLC)1100441088 
856 4 0 |u https://go.oreilly.com/UniOfColoradoBoulder/library/view/~/9781098122492/?ar  |z Full Text (via O'Reilly/Safari) 
915 |a - 
956 |a O'Reilly-Safari eBooks 
956 |b O'Reilly Online Learning: Academic/Public Library Edition 
994 |a 92  |b COD 
998 |b Subsequent record output 
999 f f |i accb464f-6b35-5492-897d-0d7cd6bcc846  |s 3de0f887-1187-5e8e-8781-f1b30e307fb5 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA279.5 .K87 2019  |h Library of Congress classification  |i web  |n 1