Anechoic and reverberation chambers : theory, design and measurements / Qian Xu, College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China, Yi Huang, The University of Liverpool, Liverpool, UK.

A comprehensive review of the recent advances in anechoic chamber and reverberation chamber designs and measurements Anechoic and Reverberation Chambers is a guide to the latest systematic solutions for designing anechoic chambers that rely on state-of-the-art computational electromagnetic algorithm...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via IEEE)
Main Authors: Xu, Qian, 1985- (Author), Huang, Yi, 1964- (Author)
Format: Electronic eBook
Language:English
Published: Hoboken, NJ, USA : Wiley-IEEE Press, 2018.
Subjects:
Table of Contents:
  • About the Authors xi
  • About the Contributors xiii
  • Acknowledgements xv
  • Acronyms xvii
  • 1 Introduction 1
  • 1.1 Background 1
  • 1.1.1 Anechoic Chambers 1
  • 1.1.2 Reverberation Chambers 3
  • 1.1.3 Relationship between Anechoic Chambers and Reverberation Chambers 6
  • 1.2 Organisation of this Book 6
  • References 8
  • 2 Theory for Anechoic Chamber Design 11
  • 2.1 Introduction 11
  • 2.2 Absorbing Material Basics 11
  • 2.2.1 General Knowledge 11
  • 2.2.2 Absorbing Material Simulation 14
  • 2.2.3 Absorbing Material Measurement 16
  • 2.3 CEM Algorithms Overview 22
  • 2.4 GO Theory 23
  • 2.4.1 GO from Maxwell Equations 23
  • 2.4.2 Analytical Expression of a Reflected Field from a Curved Surface 24
  • 2.4.3 Alternative GO Form 28
  • 2.5 GO-FEM Hybrid Method 29
  • 2.6 Summary 30
  • References 30
  • 3 Computer-aided Anechoic Chamber Design 35
  • 3.1 Introduction 35
  • 3.2 Framework 35
  • 3.3 Software Implementation 35
  • 3.3.1 3D Model Description 35
  • 3.3.2 Algorithm Complexities 36
  • 3.3.3 Far-Field Data 39
  • 3.3.4 Boundary Conditions 40
  • 3.3.5 RAM Description 41
  • 3.3.6 Forward Algorithm 42
  • 3.3.7 Inverse Algorithm 54
  • 3.3.8 Post Processing 55
  • 3.4 Summary 56
  • References 57
  • 4 Anechoic Chamber Design Examples and Verifications 59
  • 4.1 Introduction 59
  • 4.2 Normalised Site Attenuation 59
  • 4.2.1 NSA Definition 59
  • 4.2.2 NSA Simulation and Measurement 60
  • 4.3 Site Voltage Standing Wave Ratio 68
  • 4.3.1 SVSWR Definition 68
  • 4.3.2 SVSWR Simulation and Measurement 72
  • 4.4 Field Uniformity 75
  • 4.4.1 FU Definition 75
  • 4.4.2 FU Simulation and Measurement 76
  • 4.5 Design Margin 79
  • 4.6 Summary 86
  • References 87
  • 5 Fundamentals of the Reverberation Chamber 89
  • 5.1 Introduction 89
  • 5.2 Resonant Cavity Model 89
  • 5.3 Ray Model 95
  • 5.4 Statistical Electromagnetics 96
  • 5.4.1 Plane-Wave Spectrum Model 96
  • 5.4.2 Field Correlations 99
  • 5.4.3 Boundary Fields 102
  • 5.4.4 Enhanced Backscattering Effect 108
  • 5.4.5 Loss Mechanism 109.
  • 5.4.6 Probability Distribution Functions 112
  • 5.5 Figures of Merit 117
  • 5.5.1 Field Uniformity 117
  • 5.5.2 Lowest Usable Frequency 121
  • 5.5.3 Correlation Coefficient and Independent Sample Number 121
  • 5.5.4 Field Anisotropy Coefficients and Inhomogeneity Coefficients 124
  • 5.5.5 Stirring Ratio 126
  • 5.5.6 K-Factor 126
  • 5.6 Summary 128
  • References 128
  • 6 The Design of a Reverberation Chamber 133
  • 6.1 Introduction 133
  • 6.2 Design Guidelines 133
  • 6.2.1 The Shape of the RC 133
  • 6.2.2 The Lowest Usable Frequency 134
  • 6.2.3 The Working Volume 135
  • 6.2.4 The Q Factor 135
  • 6.2.5 The Stirrer Design 137
  • 6.3 Simulation of the RC 140
  • 6.3.1 Monte Carlo Method 140
  • 6.3.2 Time Domain Simulation 142
  • 6.3.3 Frequency Domain Simulation 142
  • 6.4 Time Domain Characterisation of the RC 145
  • 6.4.1 Statistical Behaviour in the Time Domain 146
  • 6.4.2 Stirrer Efficiency Based on Total Scattering Cross Section 151
  • 6.4.3 Time-Gating Technique 163
  • 6.5 Duality Principle in the RC 166
  • 6.6 The Limit of ACS and TSCS 169
  • 6.7 Design Example 172
  • 6.8 Summary 174
  • References 174
  • 7 Applications in the Reverberation Chamber 185
  • 7.1 Introduction 185
  • 7.2 Q Factor and Decay Constant 185
  • 7.3 Radiated Immunity Test 192
  • 7.4 Radiated Emission Measurement 193
  • 7.5 Free-Space Antenna S-Parameter Measurement 196
  • 7.6 Antenna Radiation Efficiency Measurement 199
  • 7.6.1 Reference Antenna Method 199
  • 7.6.2 Non-reference Antenna Method 200
  • 7.7 MIMO Antenna and Channel Emulation 212
  • 7.7.1 Diversity Gain Measurement 212
  • 7.7.2 Total Isotropic Sensitivity Measurement 219
  • 7.7.3 Channel Capacity Measurement 220
  • 7.7.4 Doppler Effect 220
  • 7.8 Antenna Radiation Pattern Measurement 223
  • 7.8.1 Theory 223
  • 7.8.2 Simulations and Measurements 228
  • 7.8.3 Discussion and Error Analysis 238
  • 7.9 Material Measurements 243
  • 7.9.1 Absorption Cross Section 243
  • 7.9.2 Average Absorption Coefficient 250
  • 7.9.3 Permittivity 257.
  • 7.9.4 Material Shielding Effectiveness 263
  • 7.10 Cavity Shielding Effectiveness Measurement 264
  • 7.11 Volume Measurement 270
  • 7.12 Summary 276
  • References 276
  • 8 Measurement Uncertainty in the Reverberation Chamber 283 /Xiaoming Chen, Yuxin Ren, and Zhihua Zhang
  • 8.1 Introduction 283
  • 8.2 Procedure for Uncertainty Characterisation 283
  • 8.3 Uncertainty Model 283
  • 8.3.1 ACF Method 284
  • 8.3.2 DoF Method 285
  • 8.3.3 Comparison of ACF and DoF Methods 286
  • 8.3.4 Semi-empirical Model 289
  • 8.4 Measurement Uncertainty of Antenna Efficiency 293
  • 8.5 Summary 300
  • References 301
  • 9 Inter-Comparison Between Antenna Radiation Efficiency Measurements Performed in an Anechoic Chamber and in a Reverberation Chamber 305 /Tian-Hong Loh and Wanquan Qi
  • 9.1 Introduction 305
  • 9.2 Measurement Facilities and Setups 306
  • 9.2.1 Anechoic Chamber 306
  • 9.2.2 Reverberation Chamber 307
  • 9.3 Antenna Efficiency Measurements 308
  • 9.3.1 Theory 308
  • 9.3.1.1 Radiation Efficiency Using the Anechoic Chamber 308
  • 9.3.1.2 Radiation Efficiency Using the Reverberation Chamber 309
  • 9.3.2 Comparison Between the AC and the RC 309
  • 9.3.2.1 Biconical Antenna 309
  • 9.3.2.2 Horn Antenna 312
  • 9.3.2.3 MIMO Antenna 312
  • 9.4 Summary 318
  • Acknowledgement 319
  • References 319
  • 10 Discussion on Future Applications 323
  • 10.1 Introduction 323
  • 10.2 Anechoic Chambers 323
  • 10.3 Reverberation Chambers 323
  • References 325
  • Appendix A Code Snippets 327
  • Appendix B Reference NSA Values 339
  • Appendix C Test Report Template 345
  • Appendix D Typical Bandpass Filters 351
  • Appendix E Compact Reverberation Chamber at NUAA 359
  • Appendix F Relevant Statistics 373
  • Index 379.