Special functions of mathematics for engineers [electronic resource] / Larry C. Andrews.

Modern engineering and physical science applications demand a thorough knowledge of applied mathematics, particularly special functions. These typically arise in applications such as communication systems, electro-optics, nonlinear wave propagation, electromagnetic theory, electric circuit theory, a...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via SPIE Digital Library)
Main Author: Andrews, Larry C.
Corporate Author: Society of Photo-Optical Instrumentation Engineers
Format: Electronic eBook
Language:English
Published: Bellingham, Wash. : SPIE, 1998.
Edition:2nd ed.
Subjects:

MARC

LEADER 00000cam a2200000xa 4500
001 b11042636
003 CoU
006 m o d
007 cr |||||||||||
008 090906r19981992waua fob 001 0 eng d
005 20230925220851.7
019 |a 508394855  |a 1027372488  |a 1048758991  |a 1058094031  |a 1066677347  |a 1067097764  |a 1116919613  |a 1119422574 
020 |a 9780819478467  |q (electronic bk.) 
020 |a 0819478466  |q (electronic bk.) 
020 |z 9780198565581 
020 |z 0198565585 
020 |z 0819426164  |q (print) 
020 |z 9780819426161  |q (print) 
024 7 |a 10.1117/3.270709 
035 |a (OCoLC)spie435971874 
035 |a (OCoLC)435971874  |z (OCoLC)508394855  |z (OCoLC)1027372488  |z (OCoLC)1048758991  |z (OCoLC)1058094031  |z (OCoLC)1066677347  |z (OCoLC)1067097764  |z (OCoLC)1116919613  |z (OCoLC)1119422574 
040 |a CaBNvSL  |b eng  |e pn  |c J2I  |d ZCU  |d OCLCQ  |d CEF  |d SPIES  |d EBLCP  |d E7B  |d OCLCO  |d OCLCQ  |d OCLCA  |d OCLCF  |d DEBSZ  |d OCLCQ  |d OCLCO  |d OCLCQ  |d N$T  |d YDXCP  |d OCLCQ  |d COO  |d MERUC  |d BUF  |d KIJ  |d U3W  |d OCLCA  |d AU@  |d OCLCQ  |d WYU  |d UWO  |d OCLCQ  |d S2H  |d OCLCQ 
049 |a GWRE 
050 4 |a QA351  |b .A75 1998e 
100 1 |a Andrews, Larry C.  |0 http://id.loc.gov/authorities/names/n81131021  |1 http://isni.org/isni/0000000108946704. 
245 1 0 |a Special functions of mathematics for engineers  |h [electronic resource] /  |c Larry C. Andrews. 
250 |a 2nd ed. 
260 |a Bellingham, Wash. :  |b SPIE,  |c 1998. 
300 |a 1 online resource (xvii, 479 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
500 |a "SPIE monograph PM49." 
500 |a "SPIE digital library." 
500 |a Copublished with Oxford University Press. 
500 |a Originally published: 2nd edition New York : McGraw-Hill, ©1992. 
504 |a Includes bibliographical references (page 451) and index. 
505 0 |a Chapter 1. Infinite series, improper integrals, and infinite products -- Introduction -- Infinite series of constants -- The geometric series -- Summary of convergence tests -- Operations with series -- Factorials and binomial coefficients -- Infinite series of functions -- Properties of uniformly convergent series -- Power series -- Sums and products of power series -- Fourier trigonometric series -- Cosine and sine series -- Improper integrals -- Types of improper integrals -- Convergence tests -- Pointwise and uniform convergence -- Asymptotic formulas -- Small arguments -- Large arguments -- Infinite products -- Associated infinite series -- Products of functions. 
505 8 |a Chapter 2. The gamma function and related functions -- Introduction -- Gamma function -- Integral representations -- Legendre duplication formula -- Weierstrass' infinite product -- Applications -- Miscellaneous problems -- Fractional-order derivatives -- Beta function -- Incomplete gamma function -- Asymptotic series -- Digamma and polygamma functions -- Integral representations -- Asymptotic series -- Polygamma functions -- Riemann zeta function. 
505 8 |a Chapter 3. Other functions defined by integrals -- Introduction -- Error function and related functions -- Asymptotic series -- Fresnel integrals -- Applications -- Probability and statistics -- Heat conduction in solids -- Vibrating beams -- Exponential integral and related functions -- Logarithmic integral -- Sine and cosine integrals -- Elliptic integrals -- Limiting values and series representations -- The pendulum problem. 
505 8 |a Chapter 4. Legendre polynomials and related functions -- Introduction -- Legendre polynomials -- The generating function -- Special values and recurrence formulas -- Legendre's differential equation -- Other representations of the legendre polynomials -- Rodrigues' formula -- Laplace integral formula -- Some bounds on Pn(x) -- Legendre series -- Orthogonality of the polynomials -- Finite legendre series -- Infinite legendre series -- Convergence of the series -- Piecewise continuous and piecewise smooth functions -- Pointwise convergence -- Legendre functions of the second kind -- Basic properties -- Associated legendre functions -- Basic properties of Pmn(x) -- Applications -- Electric potential due to a sphere -- Steady-state temperatures in a sphere. 
505 8 |a Chapter 5. Other orthogonal polynomials -- Introduction -- Hermite polynomials -- Recurrence formulas -- Hermite series -- Simple harmonic oscillator -- Laguerre polynomials -- Recurrence formulas -- Laguerre series -- Associated laguerre polynomials -- The hydrogen atom -- Generalized polynomial sets -- Gegenbauer polynomials -- Chebyshev polynomials -- Jacobi polynomials. 
505 8 |a Chapter 6. Bessel functions -- Introduction -- Bessel functions of the first kind -- The generating function -- Bessel functions of the nonintegral order -- Recurrence formulas -- Bessel's differential equation -- Integral representations -- Bessel's problem -- Geometric problems -- Integrals of Bessel functions -- Indefinite integrals -- Definite integrals -- Series involving Bessel functions -- Addition formulas -- Orthogonality of Bessel functions -- Fourier-Bessel series -- Bessel functions of the second kind -- Series expansion for Yn(x) -- Asymptotic formulas for small arguments -- Recurrence formulas -- Differential equations related to Bessel's equation -- The oscillating chain. 
505 8 |a Chapter 7. Bessel functions of other kinds -- Introduction -- Modified Bessel functions -- Modified Bessel functions of the second kind -- Recurrence formulas -- Generating function and addition theorems -- Integral relations -- Integral representations -- Integrals of modified Bessel functions -- Spherical Bessel functions -- Recurrence formulas -- Modified spherical Bessel functions -- Other Bessel functions -- Hankel functions -- Struve functions -- Kelvin's functions -- Airy functions -- Asymptotic formulas -- Small arguments -- Large arguments. 
505 8 |a Chapter 8. Applications involving Bessel functions -- Introduction -- Problems in mechanics -- The lengthening pendulum -- Buckling of a long column -- Statistical communication theory -- Narrowband noise and envelope detection -- Non-Rayleigh radar sea clutter -- Heat conduction and vibration phenomena -- Radial symmetric problems involving circles -- Radial symmetric problems involving cylinders -- The Helmholtz equation -- Step-index optical fibers -- Chapter 9. The hypergeometric function -- Introduction -- The Pochhammer symbol -- The function F(a, b;c;x) -- Elementary properties -- Integral representation -- The hypergeometric equation -- Relation to other functions -- Legendre functions -- Summing series and evaluating integrals -- Action-angle variables. 
505 8 |a Chapter 10. The confluent hypergeometric functions -- Introduction -- The functions M(a;c;x) and U(a;c;x) -- Elementary properties of M(a;c;x) -- Confluent hypergeometric equation and U(a;c;x) -- Asymptotic formulas -- Relation to other functions -- Hermite functions -- Laguerre functions -- Whittaker functions -- Chapter 11. Generalized hypergeometric functions -- Introduction -- The set of functions pFq -- Hypergeometric-type series -- Other generalizations -- The Meijer G function -- The MacRobert E function -- Chapter 12. Applications involving hypergeometric-type functions -- Introduction -- Statistical communication theory -- Nonlinear devices -- Fluid mechanics -- Unsteady hydrodynamic flow past an infinite plate -- Transonic flow and the Euler-Tricomi equation -- Random fields -- Structure function of temperature -- Bibliography -- Appendix: A list of special function formulas -- Selected answers to exercises -- Index. 
520 |a Modern engineering and physical science applications demand a thorough knowledge of applied mathematics, particularly special functions. These typically arise in applications such as communication systems, electro-optics, nonlinear wave propagation, electromagnetic theory, electric circuit theory, and quantum mechanics. This text systematically introduces special functions and explores their properties and applications in engineering and science. 
650 0 |a Functions, Special.  |0 http://id.loc.gov/authorities/subjects/sh85052348. 
650 7 |a Functions, Special.  |2 fast  |0 (OCoLC)fst00936132. 
710 2 |a Society of Photo-Optical Instrumentation Engineers.  |0 http://id.loc.gov/authorities/names/n78088934  |1 http://isni.org/isni/0000000122965856. 
776 0 8 |i Print version:  |a Andrews, Larry C.  |t Special functions of mathematics for engineers.  |b 2nd ed.  |d Bellingham, Wash. : SPIE, 1998  |z 0819426164  |w (DLC) 97013896. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=https://doi.org/10.1117/3.270709  |z Full Text (via SPIE Digital Library) 
907 |a .b110426368  |b 10-17-22  |c 06-11-20 
915 |a I 
998 |a web  |b 06-30-20  |c b  |d b   |e -  |f eng  |g wau  |h 0  |i 1 
907 |a .b110426368  |b 06-30-20  |c 06-11-20 
944 |a MARS - RDA ENRICHED 
956 |a SPIE eBooks 
956 |b SPIE eBooks 
999 f f |i 369489dd-ca6c-5304-a814-9c8282aa5985  |s e0f53288-d9fd-5d78-b0b4-60dcb67a2039 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA351 .A75 1998e  |h Library of Congress classification  |i web  |n 1