Whole-angle MEMs gyroscopes : challenges and opportunities / Doruk Senkal, Andrei M. Shkel.
"Coriolis Vibratory Gyroscopes (CVGs) can be divided into two broad categories based on the gyroscope's mechanical element: (Type 1) degenerate mode gyroscopes, which have x-y symmetry, and (Type 2) non-degenerate mode gyroscopes, which are designed intentionally to be asymmetric in x and...
Saved in:
Online Access: |
Full Text (via IEEE) |
---|---|
Main Authors: | , |
Format: | eBook |
Language: | English |
Published: |
Hoboken, New Jersey : Piscataway, NJ :
John Wiley & Sons, Inc. ; IEEE Press,
[2020]
|
Edition: | First edition. |
Series: | IEEE Press series on sensors.
|
Subjects: |
Table of Contents:
- Cover
- Title Page
- Copyright Page
- Contents
- List of Abbreviations
- Preface
- About the Authors
- Part I Fundamentals of Whole-Angle Gyroscopes
- Chapter 1 Introduction
- 1.1 Types of Coriolis Vibratory Gyroscopes
- 1.1.1 Nondegenerate Mode Gyroscopes
- 1.1.2 Degenerate Mode Gyroscopes
- 1.2 Generalized CVG Errors
- 1.2.1 Scale Factor Errors
- 1.2.2 Bias Errors
- 1.2.3 Noise Processes
- 1.2.3.1 Allan Variance
- 1.3 Overview
- Chapter 2 Dynamics
- 2.1 Introduction to Whole-Angle Gyroscopes
- 2.2 Foucault Pendulum Analogy
- 2.2.1 Damping and Q-factor.
- 2.2.1.1 Viscous Damping
- 2.2.1.2 Anchor Losses
- 2.2.1.3 Material Losses
- 2.2.1.4 Surface Losses
- 2.2.1.5 Mode Coupling Losses
- 2.2.1.6 Additional Dissipation Mechanisms
- 2.2.2 Principal Axes of Elasticity and Damping
- 2.3 Canonical Variables
- 2.4 Effect of Structural Imperfections
- 2.5 Challenges of Whole-Angle Gyroscopes
- Chapter 3 Control Strategies
- 3.1 Quadrature and Coriolis Duality
- 3.2 Rate Gyroscope Mechanization
- 3.2.1 Open-loop Mechanization
- 3.2.1.1 Drive Mode Oscillator
- 3.2.1.2 Amplitude Gain Control
- 3.2.1.3 Phase Locked Loop/Demodulation.
- 3.2.1.4 Quadrature Cancellation
- 3.2.2 Force-to-rebalance Mechanization
- 3.2.2.1 Force-to-rebalance Loop
- 3.2.2.2 Quadrature Null Loop
- 3.3 Whole-Angle Mechanization
- 3.3.1 Control System Overview
- 3.3.2 Amplitude Gain Control
- 3.3.2.1 Vector Drive
- 3.3.2.2 Parametric Drive
- 3.3.3 Quadrature Null Loop
- 3.3.3.1 AC Quadrature Null
- 3.3.3.2 DC Quadrature Null
- 3.3.4 Force-to-rebalance and Virtual Carouseling
- 3.4 Conclusions
- Part II 2-D Micro-Machined Whole-Angle Gyroscope Architectures
- Chapter 4 Overview of 2-D Micro-Machined Whole-Angle Gyroscopes.
- 4.1 2-D Micro-Machined Whole-Angle Gyroscope Architectures
- 4.1.1 Lumped Mass Systems
- 4.1.2 Ring/Disk Systems
- 4.1.2.1 Ring Gyroscopes
- 4.1.2.2 Concentric Ring Systems
- 4.1.2.3 Disk Gyroscopes
- 4.2 2-D Micro-Machining Processes
- 4.2.1 Traditional Silicon MEMS Process
- 4.2.2 Integrated MEMS/CMOS Fabrication Process
- 4.2.3 Epitaxial Silicon Encapsulation Process
- Chapter 5 Example 2-D Micro-Machined Whole-Angle Gyroscopes
- 5.1 A Distributed Mass MEMS Gyroscope
- Toroidal Ring Gyroscope
- 5.1.1 Architecture
- 5.1.1.1 Electrode Architecture.
- 5.1.2 Experimental Demonstration of the Concept
- 5.1.2.1 Fabrication
- 5.1.2.2 Experimental Setup
- 5.1.2.3 Mechanical Characterization
- 5.1.2.4 Rate Gyroscope Operation
- 5.1.2.5 Comparison of Vector Drive and Parametric Drive
- 5.2 A Lumped Mass MEMS Gyroscope
- Dual Foucault Pendulum Gyroscope
- 5.2.1 Architecture
- 5.2.1.1 Electrode Architecture
- 5.2.2 Experimental Demonstration of the Concept
- 5.2.2.1 Fabrication
- 5.2.2.2 Experimental Setup
- 5.2.2.3 Mechanical Characterization
- 5.2.2.4 Rate Gyroscope Operation
- 5.2.2.5 Parameter Identification.