The subregular germ of orbital integrals / Thomas C. Hales.

An integral formula for the subregular germ of a [italic small capital]K-orbital integral is developed. The formula holds for any reductive group over a [italic]p-adic field of characteristic zero. This expression of the subregular germ is obtained by applying Igusa's theory of asymptotic expan...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Internet Archive)
Main Author: Hales, Thomas Callister
Other title:Orbital integrals.
Format: Thesis eBook
Language:English
Published: Providence, R.I. : American Mathematical Society, ℗♭1992.
Series:Memoirs of the American Mathematical Society ; no. 476.
Subjects:

MARC

LEADER 00000cam a2200000 i 4500
001 b11248203
003 CoU
006 m o d
007 cr |||||||||||
008 920527s1992 riua obm 000 0 eng
005 20230926223944.2
010 |z 92018060 
020 |z 0821825399  |q (acid-free paper) 
020 |z 9780821825396  |q (acid-free paper) 
035 |a (CaSfIA)iam000000000225110 
040 |a DLC  |b eng  |c DLC  |d BAKER  |d BTCTA  |d YDXCP  |d GEBAY  |d NUI  |d CHRRO  |d DEBBG  |d BDX  |d GBVCP  |d OCLCO  |d OCLCF  |d OCLCQ  |d DEBSZ  |d TXI  |d CaSfIA 
050 0 4 |a QA3  |b .A57 no. 476 
072 7 |a s1ma  |2 rero 
100 1 |a Hales, Thomas Callister. 
245 1 4 |a The subregular germ of orbital integrals /  |c Thomas C. Hales. 
260 |a Providence, R.I. :  |b American Mathematical Society,  |c ℗♭1992. 
300 |a 1 online resource (xi, 142 pages :  |b illustrations) 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
490 1 |a Memoirs of the American Mathematical Society,  |x 0065-9266 ;  |v no. 476. 
500 |a "September 1992, volume 99, number 476 (third of 4 numbers)." 
502 |a A revision of the author's thesis (Ph. D.)--Princeton University, 1986. 
504 |a Includes notations and conventions, and bibliographical references (pages 133-134) 
505 0 0 |t Basic constructions --  |t Coordinates and coordinate relations --  |t Groups of rank two --  |t The subregular spurious divisor --  |t The subregular fundamental divisor --  |t Rationality and characters --  |t Applications to endoscopic groups. 
520 |a An integral formula for the subregular germ of a [italic small capital]K-orbital integral is developed. The formula holds for any reductive group over a [italic]p-adic field of characteristic zero. This expression of the subregular germ is obtained by applying Igusa's theory of asymptotic expansions. The integral formula is applied to the question of the transfer of a [italic small capital]K-orbital integral to an endoscopic group. It is shown that the quadratic characters arising in the subregular germs are compatible with the transfer. Details of the transfer are given for the subregular germ of unitary groups. 
650 0 |a p-adic fields. 
650 0 |a Representations of groups. 
650 0 |a Germs (Mathematics) 
650 7 |a Germs (Mathematics)  |2 fast  |0 (OCoLC)fst00942198. 
650 7 |a p-adic fields.  |2 fast  |0 (OCoLC)fst01185027. 
650 7 |a Representations of groups.  |2 fast  |0 (OCoLC)fst01094938. 
740 0 |a Orbital integrals. 
856 4 0 |u https://archive.org/details/subregulargermof0476hale  |z Full Text (via Internet Archive) 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 476. 
907 |a .b11248203x  |b 04-28-22  |c 06-26-20 
998 |a web  |b  - -   |c f  |d b   |e z  |f eng  |g riu  |h 4  |i 1 
956 |a Internet Archive 
999 f f |i a0fdbcc0-46f0-513f-ba9e-35f775f1eb08  |s 63ceec7b-ad92-5e3b-a72c-a0d542ea2629 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA3 .A57 no. 476  |h Library of Congress classification  |i web  |n 1