The subregular germ of orbital integrals / Thomas C. Hales.
An integral formula for the subregular germ of a [italic small capital]K-orbital integral is developed. The formula holds for any reductive group over a [italic]p-adic field of characteristic zero. This expression of the subregular germ is obtained by applying Igusa's theory of asymptotic expan...
Saved in:
Online Access: |
Full Text (via Internet Archive) |
---|---|
Main Author: | |
Other title: | Orbital integrals. |
Format: | Thesis eBook |
Language: | English |
Published: |
Providence, R.I. :
American Mathematical Society,
℗♭1992.
|
Series: | Memoirs of the American Mathematical Society ;
no. 476. |
Subjects: |
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | b11248203 | ||
003 | CoU | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 920527s1992 riua obm 000 0 eng | ||
005 | 20230926223944.2 | ||
010 | |z 92018060 | ||
020 | |z 0821825399 |q (acid-free paper) | ||
020 | |z 9780821825396 |q (acid-free paper) | ||
035 | |a (CaSfIA)iam000000000225110 | ||
040 | |a DLC |b eng |c DLC |d BAKER |d BTCTA |d YDXCP |d GEBAY |d NUI |d CHRRO |d DEBBG |d BDX |d GBVCP |d OCLCO |d OCLCF |d OCLCQ |d DEBSZ |d TXI |d CaSfIA | ||
050 | 0 | 4 | |a QA3 |b .A57 no. 476 |
072 | 7 | |a s1ma |2 rero | |
100 | 1 | |a Hales, Thomas Callister. | |
245 | 1 | 4 | |a The subregular germ of orbital integrals / |c Thomas C. Hales. |
260 | |a Providence, R.I. : |b American Mathematical Society, |c ℗♭1992. | ||
300 | |a 1 online resource (xi, 142 pages : |b illustrations) | ||
336 | |a text |b txt |2 rdacontent. | ||
337 | |a computer |b c |2 rdamedia. | ||
338 | |a online resource |b cr |2 rdacarrier. | ||
490 | 1 | |a Memoirs of the American Mathematical Society, |x 0065-9266 ; |v no. 476. | |
500 | |a "September 1992, volume 99, number 476 (third of 4 numbers)." | ||
502 | |a A revision of the author's thesis (Ph. D.)--Princeton University, 1986. | ||
504 | |a Includes notations and conventions, and bibliographical references (pages 133-134) | ||
505 | 0 | 0 | |t Basic constructions -- |t Coordinates and coordinate relations -- |t Groups of rank two -- |t The subregular spurious divisor -- |t The subregular fundamental divisor -- |t Rationality and characters -- |t Applications to endoscopic groups. |
520 | |a An integral formula for the subregular germ of a [italic small capital]K-orbital integral is developed. The formula holds for any reductive group over a [italic]p-adic field of characteristic zero. This expression of the subregular germ is obtained by applying Igusa's theory of asymptotic expansions. The integral formula is applied to the question of the transfer of a [italic small capital]K-orbital integral to an endoscopic group. It is shown that the quadratic characters arising in the subregular germs are compatible with the transfer. Details of the transfer are given for the subregular germ of unitary groups. | ||
650 | 0 | |a p-adic fields. | |
650 | 0 | |a Representations of groups. | |
650 | 0 | |a Germs (Mathematics) | |
650 | 7 | |a Germs (Mathematics) |2 fast |0 (OCoLC)fst00942198. | |
650 | 7 | |a p-adic fields. |2 fast |0 (OCoLC)fst01185027. | |
650 | 7 | |a Representations of groups. |2 fast |0 (OCoLC)fst01094938. | |
740 | 0 | |a Orbital integrals. | |
856 | 4 | 0 | |u https://archive.org/details/subregulargermof0476hale |z Full Text (via Internet Archive) |
830 | 0 | |a Memoirs of the American Mathematical Society ; |v no. 476. | |
907 | |a .b11248203x |b 04-28-22 |c 06-26-20 | ||
998 | |a web |b - - |c f |d b |e z |f eng |g riu |h 4 |i 1 | ||
956 | |a Internet Archive | ||
999 | f | f | |i a0fdbcc0-46f0-513f-ba9e-35f775f1eb08 |s 63ceec7b-ad92-5e3b-a72c-a0d542ea2629 |
952 | f | f | |p Can circulate |a University of Colorado Boulder |b Online |c Online |d Online |e QA3 .A57 no. 476 |h Library of Congress classification |i web |n 1 |