Thinking in Pandas : how to use the Python data analysis library the right way / Hannah Stepanek.

Understand and implement big data analysis solutions in pandas with an emphasis on performance. This book strengthens your intuition for working with pandas, the Python data analysis library, by exploring its underlying implementation and data structures. Thinking in Pandas introduces the topic of b...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via O'Reilly/Safari)
Main Author: Stepanek, Hannah
Format: eBook
Language:English
Published: [United States] : Apress, 2020.
Subjects:

MARC

LEADER 00000cam a2200000 i 4500
001 b11380936
006 m o d
007 cr |||||||||||
008 200613s2020 xxua o 001 0 eng d
005 20240829150117.0
015 |a GBC0G9124  |2 bnb 
016 7 |a 019827740  |2 Uk 
019 |a 1158217984  |a 1162007254  |a 1163823919  |a 1164674377  |a 1175703286  |a 1182528436  |a 1183406285  |a 1184033977  |a 1199337261  |a 1203558117 
020 |a 9781484258392  |q (electronic bk.) 
020 |a 1484258398  |q (electronic bk.) 
020 |z 148425838X 
020 |z 9781484258385 
024 7 |a 10.1007/978-1-4842-5839-2.  |2 doi 
024 8 |a 10.1007/978-1-4842-5 
029 1 |a AU@  |b 000067300827 
029 1 |a AU@  |b 000068073244 
029 1 |a UKMGB  |b 019827740 
035 |a (OCoLC)safo1157934801 
035 |a (OCoLC)1157934801  |z (OCoLC)1158217984  |z (OCoLC)1162007254  |z (OCoLC)1163823919  |z (OCoLC)1164674377  |z (OCoLC)1175703286  |z (OCoLC)1182528436  |z (OCoLC)1183406285  |z (OCoLC)1184033977  |z (OCoLC)1199337261  |z (OCoLC)1203558117 
037 |a safo9781484258392 
040 |a YDX  |b eng  |e pn  |c YDX  |d EBLCP  |d GW5XE  |d LQU  |d OCLCF  |d N$T  |d UMI  |d NLW  |d LIP  |d UKMGB  |d UKAHL  |d SNK  |d OCLCO  |d OCLCQ  |d COM  |d OCLCO  |d GUA  |d OCLCQ  |d OCLCO  |d OCLCL 
049 |a GWRE 
050 4 |a QA76.76.A65 
100 1 |a Stepanek, Hannah. 
245 1 0 |a Thinking in Pandas :  |b how to use the Python data analysis library the right way /  |c Hannah Stepanek. 
260 |a [United States] :  |b Apress,  |c 2020. 
300 |a 1 online resource (xi, 186 pages ) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a volume  |b nc  |2 rdacarrier 
347 |a text file 
347 |b PDF 
505 0 |a Intro -- Table of Contents -- About the Author -- About the Technical Reviewer -- Introduction -- Chapter 1: Introduction -- About pandas -- How pandas helped build an image of a black hole -- How pandas helps financial institutions make more informed predictions about the future market -- How pandas helps improve discoverability of content -- Chapter 2: Basic Data Access and Merging -- DataFrame creation and access -- The iloc method -- The loc method -- Combining DataFrames using the merge method -- Combining DataFrames using the join method -- Combining DataFrames using the concat method 
505 8 |a Chapter 3: How pandas Works Under the Hood -- Python data structures -- The performance of the CPython interpreter, Python, and NumPy -- An introduction to pandas performance -- Choosing the right DataFrame -- Chapter 4: Loading and Normalizing Data -- pd.read_csv -- pd.read_json -- pd.read_sql, pd.read_sql_table, and pd.read_sql_query -- Chapter 5: Basic Data Transformation in pandas -- Pivot and pivot table -- Stack and unstack -- Melt -- Transpose -- Chapter 6: The apply Method -- When not to use apply -- When to use apply -- Improving performance of apply using Cython -- Chapter 7: Groupby 
505 8 |a Using groupby correctly -- Indexing -- Avoiding groupby -- Chapter 8: Performance Improvements Beyond pandas -- Computer architecture -- How NumExpr improves performance -- BLAS and LAPACK -- Chapter 9: The Future of pandas -- pandas 1.0 -- Conclusion -- Appendix: Useful Reference Tables -- Index 
500 |a Includes index. 
520 |a Understand and implement big data analysis solutions in pandas with an emphasis on performance. This book strengthens your intuition for working with pandas, the Python data analysis library, by exploring its underlying implementation and data structures. Thinking in Pandas introduces the topic of big data and demonstrates concepts by looking at exciting and impactful projects that pandas helped to solve. From there, you will learn to assess your own projects by size and type to see if pandas is the appropriate library for your needs. Author Hannah Stepanek explains how to load and normalize data in pandas efficiently, and reviews some of the most commonly used loaders and several of their most powerful options. You will then learn how to access and transform data efficiently, what methods to avoid, and when to employ more advanced performance techniques. You will also go over basic data access and munging in pandas and the intuitive dictionary syntax. Choosing the right DataFrame format, working with multi-level DataFrames, and how pandas might be improved upon in the future are also covered. By the end of the book, you will have a solid understanding of how the pandas library works under the hood. Get ready to make confident decisions in your own projects by utilizing pandas--the right way. You will: Understand the underlying data structure of pandas and why it performs the way it does under certain circumstances Discover how to use pandas to extract, transform, and load data correctly with an emphasis on performance Choose the right DataFrame so that the data analysis is simple and efficient. Improve performance of pandas operations with other Python libraries. 
650 0 |a Application program interfaces (Computer software) 
650 0 |a Python (Computer program language) 
650 7 |a Application program interfaces (Computer software)  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
758 |i has work:  |a Thinking in Pandas (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCY3TX3c74bvDy4BGvfcQMP  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |z 148425838X  |z 9781484258385  |w (OCoLC)1141159572 
856 4 0 |u https://go.oreilly.com/UniOfColoradoBoulder/library/view/~/9781484258392/?ar  |z Full Text (via O'Reilly/Safari) 
915 |a - 
956 |a O'Reilly-Safari eBooks 
956 |b O'Reilly Online Learning: Academic/Public Library Edition 
994 |a 92  |b COD 
998 |b Subsequent record output 
999 f f |i 567ce99e-2915-5d93-a91a-33807aa61a67  |s ac27a7df-9ebc-551f-b719-3f4d6339b34c 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA76.76.A65  |h Library of Congress classification  |i web  |n 1