A Kalman filter primer / R.L. Eubank.

Eubank (mathematics and statistics, Arizona State U.) offers a self-contained, concise rigorous derivation of all the basic Kalman filter recursions from first principles. He lays out the basic prediction problem for signal-plus-noise models, deriving the Gramm-Schmidt algorithm and Cholesky decompo...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Taylor & Francis)
Main Author: Eubank, R. L. (Randy L.)
Format: eBook
Language:English
Published: Boca Raton, Fla. : Chapman & Hall/CRC, 2006.
Series:Statistics, textbooks and monographs ; v. 186.
Subjects:

MARC

LEADER 00000cam a22000004a 4500
001 b11540932
003 CoU
005 20220916050200.0
006 m o d
007 cr |||||||||||
008 050805s2006 flua ob 001 0 eng c
019 |a 72685516  |a 148658932  |a 647589715  |a 779911843  |a 992085704  |a 994953363  |a 1006808902  |a 1031052749  |a 1058779106  |a 1065899418  |a 1102529040  |a 1135926679  |a 1138987861  |a 1152781109  |a 1228587308 
020 |a 0824723651  |q (alk. paper) 
020 |a 9780824723651  |q (alk. paper) 
020 |a 1420028677  |q (electronic bk.) 
020 |a 9781420028676  |q (electronic bk.) 
020 |a 1281326178 
020 |a 9781281326171 
020 |a 9786611326173 
020 |a 6611326170 
024 7 |a 10.1201/9781420028676 
035 |a (OCoLC)tfe123439160 
035 |a (OCoLC)123439160  |z (OCoLC)72685516  |z (OCoLC)148658932  |z (OCoLC)647589715  |z (OCoLC)779911843  |z (OCoLC)992085704  |z (OCoLC)994953363  |z (OCoLC)1006808902  |z (OCoLC)1031052749  |z (OCoLC)1058779106  |z (OCoLC)1065899418  |z (OCoLC)1102529040  |z (OCoLC)1135926679  |z (OCoLC)1138987861  |z (OCoLC)1152781109  |z (OCoLC)1228587308 
037 |a tfe9780429117596 
040 |a PUL  |b eng  |e pn  |c PUL  |d NJR  |d N$T  |d YDXCP  |d VLB  |d IDEBK  |d E7B  |d OCLCQ  |d MYPMP  |d OCLCQ  |d TULIB  |d OCLCF  |d CRCPR  |d OCLCQ  |d OCLCO  |d OCLCQ  |d CASUM  |d PIFBY  |d OTZ  |d UAB  |d U3W  |d ERL  |d OCLCQ  |d CEF  |d UPM  |d NLE  |d UKMGB  |d WYU  |d S9I  |d TYFRS  |d LEAUB  |d UX1  |d UKAHL  |d OL$  |d UHL  |d NLW  |d REDDC  |d LOA  |d K6U  |d ZCU  |d VT2  |d LVT  |d AU@  |d YDX  |d DINAT  |d OCLCQ  |d OCLCO  |d SFB 
042 |a pcc 
049 |a GWRE 
050 4 |a QA402.3  |b .E925 2006 
066 |c (S 
100 1 |a Eubank, R. L.  |q (Randy L.) 
245 1 2 |a A Kalman filter primer /  |c R.L. Eubank. 
260 |a Boca Raton, Fla. :  |b Chapman & Hall/CRC,  |c 2006. 
300 |a 1 online resource (186 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
347 |a data file. 
490 1 |a Statistics, textbooks and monographs ;  |v v. 186. 
504 |a Includes bibliographical references (pages 183-184) and index. 
505 0 |a Chapter 1 Signal-Plus-Noise Models -- chapter 2 The Fundamental Covariance Structure -- chapter 3 Recursions for L and L−1 -- chapter 4 Forward Recursions -- chapter 5 Smoothing -- chapter 6 Initialization -- chapter 7 Normal Priors -- chapter 8 A General State-Space Model. 
520 |a Eubank (mathematics and statistics, Arizona State U.) offers a self-contained, concise rigorous derivation of all the basic Kalman filter recursions from first principles. He lays out the basic prediction problem for signal-plus-noise models, deriving the Gramm-Schmidt algorithm and Cholesky decomposition. He covers the fundamental covariance struc. 
546 |a English. 
650 0 |a Kalman filtering  |v Textbooks. 
650 7 |a Kalman filtering.  |2 fast  |0 (OCoLC)fst00985838. 
655 7 |a Textbooks.  |2 fast  |0 (OCoLC)fst01423863. 
776 0 8 |i Print version:  |a Eubank, R.L. (Randy L.).  |t Kalman filter primer.  |d Boca Raton, Fla. : Chapman & Hall/CRC, 2006  |z 0824723651  |w (DLC) 2005051951  |w (OCoLC)61253979. 
830 0 |a Statistics, textbooks and monographs ;  |v v. 186. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=https://www.taylorfrancis.com/books/9780429117596  |z Full Text (via Taylor & Francis) 
880 0 |6 505-00/(S  |a Signal-Plus-Noise Models ; Introduction; The Prediction Problem; State-Space Models; What Lies Ahead; The Fundamental Covariance Structure ; Introduction; Some Tools of the Trade; State and Innovation Covariances; An Example; Recursions for L and L −1 ; Introduction; Recursions for L ; Recursions for L −1 ; An Example; Forward Recursions ; Introduction; Computing the Innovations; State and Signal Prediction; Other Options; Examples; Smoothing ; Introduction; Fixed Interval Smoothing; Examples; Initialization ; Introduction; Diffuseness; Diffuseness and Least-Squares Estimation; An Example; Normal Priors ; Introduction; Likelihood Evaluation; Diffuseness; Parameter Estimation; An Example; A General State-Space Model ; Introduction; KF Recursions; Estimation of β ; Likelihood Evaluation; Appendix A: The Cholesky Decomposition ; Appendix B: Notation Guide ; References ; Index. 
907 |a .b115409324  |b 02-21-23  |c 01-22-21 
998 |a web  |b  - -   |c f  |d b   |e -  |f eng  |g flu  |h 2  |i 1 
915 |a 4 
956 |a Taylor & Francis Ebooks 
956 |b Taylor & Francis All eBooks 
956 |a Taylor & Francis eBooks 
999 f f |i 805e60bb-b377-5afe-80a3-f643b2fd9157  |s 83656d48-d568-51d9-b3ac-ca49cab01a2b 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA402.3 .E925 2006  |h Library of Congress classification  |i web  |n 1