A Kalman filter primer / R.L. Eubank.
Eubank (mathematics and statistics, Arizona State U.) offers a self-contained, concise rigorous derivation of all the basic Kalman filter recursions from first principles. He lays out the basic prediction problem for signal-plus-noise models, deriving the Gramm-Schmidt algorithm and Cholesky decompo...
Saved in:
Online Access: |
Full Text (via Taylor & Francis) |
---|---|
Main Author: | |
Format: | eBook |
Language: | English |
Published: |
Boca Raton, Fla. :
Chapman & Hall/CRC,
2006.
|
Series: | Statistics, textbooks and monographs ;
v. 186. |
Subjects: |
MARC
LEADER | 00000cam a22000004a 4500 | ||
---|---|---|---|
001 | b11540932 | ||
003 | CoU | ||
005 | 20220916050200.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 050805s2006 flua ob 001 0 eng c | ||
019 | |a 72685516 |a 148658932 |a 647589715 |a 779911843 |a 992085704 |a 994953363 |a 1006808902 |a 1031052749 |a 1058779106 |a 1065899418 |a 1102529040 |a 1135926679 |a 1138987861 |a 1152781109 |a 1228587308 | ||
020 | |a 0824723651 |q (alk. paper) | ||
020 | |a 9780824723651 |q (alk. paper) | ||
020 | |a 1420028677 |q (electronic bk.) | ||
020 | |a 9781420028676 |q (electronic bk.) | ||
020 | |a 1281326178 | ||
020 | |a 9781281326171 | ||
020 | |a 9786611326173 | ||
020 | |a 6611326170 | ||
024 | 7 | |a 10.1201/9781420028676 | |
035 | |a (OCoLC)tfe123439160 | ||
035 | |a (OCoLC)123439160 |z (OCoLC)72685516 |z (OCoLC)148658932 |z (OCoLC)647589715 |z (OCoLC)779911843 |z (OCoLC)992085704 |z (OCoLC)994953363 |z (OCoLC)1006808902 |z (OCoLC)1031052749 |z (OCoLC)1058779106 |z (OCoLC)1065899418 |z (OCoLC)1102529040 |z (OCoLC)1135926679 |z (OCoLC)1138987861 |z (OCoLC)1152781109 |z (OCoLC)1228587308 | ||
037 | |a tfe9780429117596 | ||
040 | |a PUL |b eng |e pn |c PUL |d NJR |d N$T |d YDXCP |d VLB |d IDEBK |d E7B |d OCLCQ |d MYPMP |d OCLCQ |d TULIB |d OCLCF |d CRCPR |d OCLCQ |d OCLCO |d OCLCQ |d CASUM |d PIFBY |d OTZ |d UAB |d U3W |d ERL |d OCLCQ |d CEF |d UPM |d NLE |d UKMGB |d WYU |d S9I |d TYFRS |d LEAUB |d UX1 |d UKAHL |d OL$ |d UHL |d NLW |d REDDC |d LOA |d K6U |d ZCU |d VT2 |d LVT |d AU@ |d YDX |d DINAT |d OCLCQ |d OCLCO |d SFB | ||
042 | |a pcc | ||
049 | |a GWRE | ||
050 | 4 | |a QA402.3 |b .E925 2006 | |
066 | |c (S | ||
100 | 1 | |a Eubank, R. L. |q (Randy L.) | |
245 | 1 | 2 | |a A Kalman filter primer / |c R.L. Eubank. |
260 | |a Boca Raton, Fla. : |b Chapman & Hall/CRC, |c 2006. | ||
300 | |a 1 online resource (186 pages) : |b illustrations. | ||
336 | |a text |b txt |2 rdacontent. | ||
337 | |a computer |b c |2 rdamedia. | ||
338 | |a online resource |b cr |2 rdacarrier. | ||
347 | |a data file. | ||
490 | 1 | |a Statistics, textbooks and monographs ; |v v. 186. | |
504 | |a Includes bibliographical references (pages 183-184) and index. | ||
505 | 0 | |a Chapter 1 Signal-Plus-Noise Models -- chapter 2 The Fundamental Covariance Structure -- chapter 3 Recursions for L and L−1 -- chapter 4 Forward Recursions -- chapter 5 Smoothing -- chapter 6 Initialization -- chapter 7 Normal Priors -- chapter 8 A General State-Space Model. | |
520 | |a Eubank (mathematics and statistics, Arizona State U.) offers a self-contained, concise rigorous derivation of all the basic Kalman filter recursions from first principles. He lays out the basic prediction problem for signal-plus-noise models, deriving the Gramm-Schmidt algorithm and Cholesky decomposition. He covers the fundamental covariance struc. | ||
546 | |a English. | ||
650 | 0 | |a Kalman filtering |v Textbooks. | |
650 | 7 | |a Kalman filtering. |2 fast |0 (OCoLC)fst00985838. | |
655 | 7 | |a Textbooks. |2 fast |0 (OCoLC)fst01423863. | |
776 | 0 | 8 | |i Print version: |a Eubank, R.L. (Randy L.). |t Kalman filter primer. |d Boca Raton, Fla. : Chapman & Hall/CRC, 2006 |z 0824723651 |w (DLC) 2005051951 |w (OCoLC)61253979. |
830 | 0 | |a Statistics, textbooks and monographs ; |v v. 186. | |
856 | 4 | 0 | |u https://colorado.idm.oclc.org/login?url=https://www.taylorfrancis.com/books/9780429117596 |z Full Text (via Taylor & Francis) |
880 | 0 | |6 505-00/(S |a Signal-Plus-Noise Models ; Introduction; The Prediction Problem; State-Space Models; What Lies Ahead; The Fundamental Covariance Structure ; Introduction; Some Tools of the Trade; State and Innovation Covariances; An Example; Recursions for L and L −1 ; Introduction; Recursions for L ; Recursions for L −1 ; An Example; Forward Recursions ; Introduction; Computing the Innovations; State and Signal Prediction; Other Options; Examples; Smoothing ; Introduction; Fixed Interval Smoothing; Examples; Initialization ; Introduction; Diffuseness; Diffuseness and Least-Squares Estimation; An Example; Normal Priors ; Introduction; Likelihood Evaluation; Diffuseness; Parameter Estimation; An Example; A General State-Space Model ; Introduction; KF Recursions; Estimation of β ; Likelihood Evaluation; Appendix A: The Cholesky Decomposition ; Appendix B: Notation Guide ; References ; Index. | |
907 | |a .b115409324 |b 02-21-23 |c 01-22-21 | ||
998 | |a web |b - - |c f |d b |e - |f eng |g flu |h 2 |i 1 | ||
915 | |a 4 | ||
956 | |a Taylor & Francis Ebooks | ||
956 | |b Taylor & Francis All eBooks | ||
956 | |a Taylor & Francis eBooks | ||
999 | f | f | |i 805e60bb-b377-5afe-80a3-f643b2fd9157 |s 83656d48-d568-51d9-b3ac-ca49cab01a2b |
952 | f | f | |p Can circulate |a University of Colorado Boulder |b Online |c Online |d Online |e QA402.3 .E925 2006 |h Library of Congress classification |i web |n 1 |