Introduction to contextual processing : theory and applications / Gregory L. Vert, S. Sitharama Iyengar, and Vir V. Phoha.
"Develops a Comprehensive, Global Model for Contextually Based Processing Systems A new perspective on global information systems operation Helping to advance a valuable paradigm shift in the next generation and processing of knowledge, Introduction to Contextual Processing: Theory and Applicat...
Saved in:
Online Access: |
Full Text (via Taylor & Francis) |
---|---|
Main Author: | |
Other Authors: | , |
Format: | eBook |
Language: | English |
Published: |
Boca Raton :
CRC Press,
©2011.
|
Subjects: |
Table of Contents:
- Ch. 1. The case for contextually driven computation
- ch. 2. Defining the transformation of data to contextual knowledge
- ch. 3. Calculus for reasoning about contextual information
- ch. 4. Information mining for contextual data sensing and fusion
- ch. 5. Hyperdistribution of contextual information
- ch. 6. Set-based data management models for contextual data and ambiguity in selection
- ch. 7. Security modeling using contextual data cosmology and brane surfaces.
- Machine generated contents note: ch. 1 Case for Contextually Driven Computation
- Theme
- 1.1. Three Mile Island Nuclear Disaster
- 1.2. Indian Ocean Tsunami Disaster
- 1.3. Contextual Information Processing (CIP) of Disaster Data
- 1.4. Contextual Information Processing and Information Assurance (CIPIA) of Disaster Data
- 1.5. Components of Traditional Information Technology (IT) Architectures
- 1.6. Example of Traditional It Architectures and Their Limitations
- 1.7. Contextual Processing and the Semantic Web
- 1.8. Contextual Processing and Cloud Computing
- 1.9. Contextual Processing and Universal Core
- 1.10. Case for Contextual Processing and Summary
- References
- ch. 2 Defining the Transformation of Data to Contextual Knowledge
- Theme
- 2.1. Introduction and Knowledge Derivation from the Snow of Data
- 2.2. Importance of Knowledge in Manmade Disasters
- 2.2.1. September 11: World Trade Center
- 2.3. Context Models and Their Applications
- 2.4. Defining Contextual Processing
- 2.5. Properties of Contextual Data
- 2.6. Characteristics of Data
- 2.7. Semantics and Syntactical Processing Models for Contextual Processing
- 2.8. Storage Models that Preserve Spatial and Temporal Relationships Among Contexts
- 2.9. Deriving Knowledge from Collected and Stored Contextual Information
- 2.10. Similarities Among Data Objects
- 2.11. Reasoning Methods for Similarity Analysis of Contexts
- 2.11.1. Statistical Methods Means, Averages, Ceilings, and Floors
- 2.11.2. Fuzzy Sets
- 2.11.3. Standard Deviation
- 2.11.4. Probabilistic Reasoning
- 2.11.5. Support Vector Machines
- 2.11.6. Clustering
- 2.11.7. Bayesian Techniques
- 2.11.8. Decision Trees
- 2.12. Other Types of Reasoning in Contexts
- 2.13. Context Quality
- 2.14. Research Directions for Global Contextual Processing
- References
- ch. 3 Calculus for Reasoning about Contextual Information
- Theme
- 3.1. Context Representation
- 3.2. Modus Ponens
- 3.3. Fuzzy Set and Operations
- 3.3.1. Union
- 3.3.2. Intersection
- 3.3.3. Complement
- 3.3.3.1. De Morgan's Law
- 3.3.3.2. Associativity
- 3.3.3.3. Commutativity
- 3.3.3.4. Distributivity
- 3.4. Contextual Information and Nonmonotonic Logic
- 3.4.1. Conflicts in Conclusions
- 3.4.2. Default Theory
- 3.4.2.1. Default
- 3.4.2.2. Default Theory
- 3.4.3. Entailment in a Contextual Case
- 3.4.3.1. Prioritized Default Theory
- 3.5. Situation Calculus
- 3.5.1. Frame Problem
- 3.5.2. Circumscription and the Yale Shooting Problem
- 3.5.3. Formalism
- 3.5.3.1. Action
- 3.5.3.2. Situation
- 3.5.3.3. Fluent
- 3.5.4. Successor State Axioms
- 3.6. Recommended Framework
- 3.6.1. Fuzzy Inference Scheme
- 3.7. Example
- 3.7.1. Prioritize Defaults
- 3.7.2. Resolve the Frame Problem
- 3.7.3. Fuzzy Inference
- 3.8. Conclusion
- References
- ch. 4 Information Mining for Contextual Data Sensing and Fusion
- Theme
- 4.1. Data-Mining Overview
- 4.2. Distributed Data Mining
- 4.2.1. Motivation for Distributed Data Mining
- 4.2.2. DDM Systems
- 4.2.2.1. Data-Driven Approach
- 4.2.2.2. Model-Driven Approach
- 4.2.2.3. Architecture-Driven Approach
- 4.2.3. State of the Art
- 4.2.3.1. Parallel and Distributed DM Algorithms
- 4.2.4. Research Directions
- 4.2.5. Scheduling DM Tasks on Distributed Platforms
- 4.2.6. Data and the K-Grid
- 4.2.7. Knowledge Grid Scheduler (KGS)
- 4.2.8. Requirements of the KGS
- 4.2.9. Design of the KGS
- 4.2.10. Architectural Model for a K-Grid
- 4.3. Context-Based Sensing, Data Mining, and its Applications
- 4.3.1. Applications of Contextual Data Mining
- 4.4. Example: The Coastal Restoration Data Grid and Hurricane Katrina
- 4.5. Power of Information Mining in Contextual Computing
- 4.6. Enabling Large-Scale Data Analysis
- 4.7. Example: Accessing Real-Time Information-Sensor Grids
- 4.8. Research Directions for Fusion and Data Mining In Contextual Processing
- References
- ch. 5 Hyperdistribution of Contextual Information
- Theme
- 5.1. Introduction to Data Dissemination and Discovery
- 5.2. Defining Hyperdistribution
- 5.3. Issues in Hyperdistribution
- 5.3.1. Context Generation
- 5.3.2. Discovery of Consumers
- 5.3.3. Routing of Data and Contextual Information
- 5.4. Methods Infrastructure, Algorithms, and Agents
- 5.4.1. Introduction
- 5.4.2. Intelligent Agents
- 5.4.3. Mobile Agents
- 5.4.4. Web Services
- 5.4.5. Security Issues with Web Services
- 5.4.6. Use of Web Services as Mobile Agent Hosts
- 5.4.7. Security Issues with the Use of Web Services as Mobile Agent Hosts
- 5.4.8. Web Services as Static Agents
- 5.4.9. Hyperdistribution Methods
- 5.5. Modeling Tools
- 5.5.1. π-Calculus
- 5.5.1.1. Overview
- 5.5.1.2. Preliminary Definitions
- 5.5.1.3. Polyadic π-Calculus
- 5.5.2. Ambient Calculus
- 5.5.2.1. Ambients
- 5.5.2.2. Mobility and Communication
- 5.5.3. Petri Nets
- 5.5.3.1. Overview
- 5.5.3.2. Formal Definition
- 5.5.3.3. Extensions to the Petri Net
- 5.6. Advanced Topics
- 5.6.1. Api-S Calculus
- 5.6.1.1. Syntax
- 5.6.1.2. Actions
- 5.6.1.3. Binding
- 5.6.1.4. Substitution and Convertibility
- 5.6.1.5. Broadcasting
- 5.6.1.6. Abbreviations
- 5.6.1.7. Structural Congruence
- 5.6.1.8. Reduction
- 5.6.1.9. Simple Examples of API-S
- 5.7. Example: Contextual Hyperdistribution
- 5.8. Research Directions in Hyperdistribution of Contexts
- References
- ch. 6 Set-Based Data Management Models for Contextual Data and Ambiguity in Selection
- Theme
- 6.1. Introduction to Data Management
- 6.2. Background on Contextual Data Management
- 6.3. Context-Oriented Data Set Management
- 6.4. Contextual Set Spatial Ambiguity in Retrieval
- 6.5. Set Model-Based Erd
- 6.6. Fuzzy Erd Model For Contextual Data Management
- 6.7. Contextual Subsets
- 6.8. Fuzzy Relation Similar Fns()
- 6.9. Fuzzy Directionality
- 6.10. Discretizing Function (Temporal ()
- 6.11. Fuzzy Relation (Spatial()
- 6.12. Extended Data Model for the Storage of Context Data Sets
- 6.13. Example: Set-Based Modeling and Contextual Data Management
- 6.14. Research Directions in Contextually Based Set Model Data Management
- References
- ch. 7 Security Modeling Using Contextual Data Cosmology and Brane Surfaces
- Theme
- 7.1. General Security
- 7.1.1. Cybersecurity Overview and Issues
- 7.1.2. Models of Security
- 7.2. Challenges and Issues in the Development of Contextual Security
- 7.2.1. Elements of Contexts
- 7.2.2. Core Issues in Contextual Security
- 7.2.2.1. Distribution
- 7.2.2.2. Authentication
- 7.2.2.3. Control and Geopolitics
- 7.2.2.4. Spatial Data Security
- 7.2.2.5. Time and Streaming
- 7.2.2.6. Spatial Relationships
- 7.2.2.7. Versioning Relationships
- 7.2.2.8. Impact and Criticality
- 7.3. N-Dimensional Surface Model That Can Be Applied to Contextual Security
- 7.3.1. Key Concepts of Relevance to Security
- 7.3.2. Branes Defined
- 7.3.3. Brane Geo-referencing
- 7.3.4. Brane Classification Properties
- 7.3.4.1. Inclusiveness
- 7.3.4.2. Continuity
- 7.3.4.3. Discreteness
- 7.3.5. Selected Branes' Structures and Properties
- 7.3.5.1. Hexahedron Brane
- 7.3.5.2. Cylindrical Brane
- 7.3.5.3. Frustum of a Cone Brane
- 7.3.5.4. calcsecuritylevel()
- 7.3.5.5. n-Sided Pyramid Brane
- 7.3.5.6. pointinsideface (Eo, sides, apex)
- 7.3.5.7. calcintersection (baseside, Eo)
- 7.3.5.8. Frustum of a Pyramid Brane
- 7.4. Textual Example: Pretty Good Security and Branes
- 7.5. Practical Example: Pretty Good Security and Branes
- 7.6. Research Directions in Pretty Good Security
- References.