Computational statistics : an introduction to R / G÷unther Sawitzki.
Suitable for a compact course or self-study, Computational Statistics: An Introduction to R illustrates how to use the freely available R software package for data analysis, statistical programming, and graphics. Integrating R code and examples throughout, the text only requires basic knowledge of s...
Saved in:
Online Access: |
Full Text (via Taylor & Francis) |
---|---|
Main Author: | |
Format: | eBook |
Language: | English |
Published: |
Boca Raton :
CRC Press,
©2009.
|
Subjects: |
MARC
LEADER | 00000cam a2200000Ma 4500 | ||
---|---|---|---|
001 | b11624472 | ||
003 | CoU | ||
005 | 20220916050200.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 080924s2009 fluaf ob 001 0 eng d | ||
019 | |a 904678752 | ||
020 | |a 9781420086812 |q (e-book ; |q PDF) | ||
020 | |a 1420086812 | ||
020 | |z 9781420086782 | ||
020 | |z 1420086782 | ||
035 | |a (OCoLC)tfe1000433239 | ||
035 | |a (OCoLC)1000433239 |z (OCoLC)904678752 | ||
037 | |a tfe9780429146275 | ||
040 | |a TYFRS |b eng |e pn |c TYFRS |d OCLCO |d YDXCP |d E7B |d CRCPR |d OCLCF |d EBLCP |d MERUC |d OCLCQ |d STF |d WYU |d OCLCQ |d LEAUB |d OCLCQ |d UUM |d OCLCQ |d ZCU |d RDF |d SFB |d OCLCO | ||
049 | |a GWRE | ||
050 | 4 | |a QA276.45.R3 |b S29 2009 | |
100 | 1 | |a Sawitzki, Gèunther. | |
245 | 1 | 0 | |a Computational statistics : |b an introduction to R / |c G÷unther Sawitzki. |
260 | |a Boca Raton : |b CRC Press, |c ©2009. | ||
300 | |a 1 online resource (xiv, 251 pages, 8 unnumbered pages of plates) : |b illustrations (some color) | ||
336 | |a text |b txt |2 rdacontent. | ||
337 | |a computer |b c |2 rdamedia. | ||
338 | |a online resource |b cr |2 rdacarrier. | ||
500 | |a "A Chapman & Hall book." | ||
504 | |a Includes bibliographical references (pages 233-235) and indexes. | ||
505 | 0 | |a 1 Basic data analysis -- R programming conventions -- Generation of random numbers and patterns -- Random numbers -- Patterns -- Case study: distribution diagnostics -- Distribution functions -- Histograms -- Barcharts -- Statistics of distribution functions; Kolmogorov-Smirnov tests -- Monte Carlo confidence bands -- Statistics of histograms and related plots; X2-tests -- Moments and quantiles -- R complements -- Random numbers -- Graphical comparisons -- Functions -- Enhancing graphical displays -- R internals -- parse -- eval -- print -- Executing files -- Packages -- Statistical summary -- Literature and additional references -- 2 Regression -- General regression model -- Linear model -- Factors -- Least squares estimation -- Regression diagnostics -- More examples for linear models -- Model formulae -- Gauss-Markov estimator and residuals -- Variance decomposition and analysis of variance -- Simultaneous inference -- Scheff́e's confidence bands -- Tukey's confidence intervals -- Case study: titre plates -- Beyond linear regression -- Transformations -- Generalised linear models -- Local regression -- R complements -- Discretisation -- External data -- Testing software -- R data types -- Classes and polymorphic functions -- Extractor functions -- Statistical summary -- Literature and additional references. | |
505 | 0 | |a 3 Comparisons -- Shift/scale families, and stochastic order -- QQ plot, PP plot, and comparison of distributions -- Kolmogorov-Smirnov tests -- Tests for shift alternatives -- Road map -- Power and confidence -- Theoretical power and confidence -- Simulated power and confidence -- Quantile estimation -- Qualitative features of distributions -- Statistical summary -- Literature and additional references -- 4 Dimensions 1, 2, 3, ..., c -- R Complements -- Dimensions -- Selections -- Projections -- Marginal distributions and scatter plot matrices -- Projection pursuit -- Projections for dimensions 1, 2, 3, ... 7 -- Parallel coordinates -- Sections, conditional distributions and coplots -- Transformations and dimension reduction -- Higher dimensions -- Linear case -- Partial residuals and added variable plots -- Non-linear case -- Example: cusp non-linearity -- Case study: Melbourne temperature data -- Curse of dimensionality -- Case study: body fat -- High dimensions -- Statistical summary -- R as a programming language and environment -- Help and information -- Names and search paths -- Administration and customisation -- Basic data types -- Output for objects -- Object inspection -- System inspection -- Complex data types -- Accessing components -- Data manipulation -- Operators -- Functions -- Debugging and profiling -- Control structures -- Input and output to data streams; external data -- Libraries, packages -- Mathematical operators and functions; linear algebra -- Model descriptions -- Graphic functions -- High-level graphics -- Low-level graphics -- Annotations and legends -- Graphic parameters and Llyout -- Elementary statistical functions -- Distributions, random numbers, densities... -- Computing on the language. | |
520 | |a Suitable for a compact course or self-study, Computational Statistics: An Introduction to R illustrates how to use the freely available R software package for data analysis, statistical programming, and graphics. Integrating R code and examples throughout, the text only requires basic knowledge of statistics and computing. This introduction covers one-sample analysis and distribution diagnostics, regression, two-sample problems and comparison of distributions, and multivariate analysis. It uses a range of examples to demonstrate how R can be employed to tackle statistical problems. In addition, the handy appendix includes a collection of R language elements and functions, serving as a quick reference and starting point to access the rich information that comes bundled with R. Accessible to a broad audience, this book explores key topics in data analysis, regression, statistical distributions, and multivariate statistics. Full of examples and with a color insert, it helps readers become familiar with R. | ||
650 | 0 | |a R (Computer program language) | |
650 | 0 | |a Mathematical statistics |x Data processing. | |
650 | 7 | |a Mathematical statistics |x Data processing. |2 fast |0 (OCoLC)fst01012133. | |
650 | 7 | |a R (Computer program language) |2 fast |0 (OCoLC)fst01086207. | |
776 | 1 | |z 9781420086782. | |
856 | 4 | 0 | |u https://colorado.idm.oclc.org/login?url=https://www.taylorfrancis.com/books/9780429146275 |z Full Text (via Taylor & Francis) |
907 | |a .b116244720 |b 02-21-23 |c 01-22-21 | ||
998 | |a web |b - - |c f |d b |e - |f eng |g flu |h 0 |i 1 | ||
915 | |a M | ||
956 | |a Taylor & Francis Ebooks | ||
956 | |b Taylor & Francis All eBooks | ||
956 | |a Taylor & Francis eBooks | ||
999 | f | f | |i 41113750-f433-52c9-9db6-a38641b5814a |s 9a4b7798-97bb-533d-9bd0-4abccab97668 |
952 | f | f | |p Can circulate |a University of Colorado Boulder |b Online |c Online |d Online |e QA276.45.R3 S29 2009 |h Library of Congress classification |i web |n 1 |