Computational statistics : an introduction to R / G÷unther Sawitzki.

Suitable for a compact course or self-study, Computational Statistics: An Introduction to R illustrates how to use the freely available R software package for data analysis, statistical programming, and graphics. Integrating R code and examples throughout, the text only requires basic knowledge of s...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Taylor & Francis)
Main Author: Sawitzki, Gèunther
Format: eBook
Language:English
Published: Boca Raton : CRC Press, ©2009.
Subjects:

MARC

LEADER 00000cam a2200000Ma 4500
001 b11624472
003 CoU
005 20220916050200.0
006 m o d
007 cr |||||||||||
008 080924s2009 fluaf ob 001 0 eng d
019 |a 904678752 
020 |a 9781420086812  |q (e-book ;  |q PDF) 
020 |a 1420086812 
020 |z 9781420086782 
020 |z 1420086782 
035 |a (OCoLC)tfe1000433239 
035 |a (OCoLC)1000433239  |z (OCoLC)904678752 
037 |a tfe9780429146275 
040 |a TYFRS  |b eng  |e pn  |c TYFRS  |d OCLCO  |d YDXCP  |d E7B  |d CRCPR  |d OCLCF  |d EBLCP  |d MERUC  |d OCLCQ  |d STF  |d WYU  |d OCLCQ  |d LEAUB  |d OCLCQ  |d UUM  |d OCLCQ  |d ZCU  |d RDF  |d SFB  |d OCLCO 
049 |a GWRE 
050 4 |a QA276.45.R3  |b S29 2009 
100 1 |a Sawitzki, Gèunther. 
245 1 0 |a Computational statistics :  |b an introduction to R /  |c G÷unther Sawitzki. 
260 |a Boca Raton :  |b CRC Press,  |c ©2009. 
300 |a 1 online resource (xiv, 251 pages, 8 unnumbered pages of plates) :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
500 |a "A Chapman & Hall book." 
504 |a Includes bibliographical references (pages 233-235) and indexes. 
505 0 |a 1 Basic data analysis -- R programming conventions -- Generation of random numbers and patterns -- Random numbers -- Patterns -- Case study: distribution diagnostics -- Distribution functions -- Histograms -- Barcharts -- Statistics of distribution functions; Kolmogorov-Smirnov tests -- Monte Carlo confidence bands -- Statistics of histograms and related plots; X2-tests -- Moments and quantiles -- R complements -- Random numbers -- Graphical comparisons -- Functions -- Enhancing graphical displays -- R internals -- parse -- eval -- print -- Executing files -- Packages -- Statistical summary -- Literature and additional references -- 2 Regression -- General regression model -- Linear model -- Factors -- Least squares estimation -- Regression diagnostics -- More examples for linear models -- Model formulae -- Gauss-Markov estimator and residuals -- Variance decomposition and analysis of variance -- Simultaneous inference -- Scheff́e's confidence bands -- Tukey's confidence intervals -- Case study: titre plates -- Beyond linear regression -- Transformations -- Generalised linear models -- Local regression -- R complements -- Discretisation -- External data -- Testing software -- R data types -- Classes and polymorphic functions -- Extractor functions -- Statistical summary -- Literature and additional references. 
505 0 |a 3 Comparisons -- Shift/scale families, and stochastic order -- QQ plot, PP plot, and comparison of distributions -- Kolmogorov-Smirnov tests -- Tests for shift alternatives -- Road map -- Power and confidence -- Theoretical power and confidence -- Simulated power and confidence -- Quantile estimation -- Qualitative features of distributions -- Statistical summary -- Literature and additional references -- 4 Dimensions 1, 2, 3, ..., c -- R Complements -- Dimensions -- Selections -- Projections -- Marginal distributions and scatter plot matrices -- Projection pursuit -- Projections for dimensions 1, 2, 3, ... 7 -- Parallel coordinates -- Sections, conditional distributions and coplots -- Transformations and dimension reduction -- Higher dimensions -- Linear case -- Partial residuals and added variable plots -- Non-linear case -- Example: cusp non-linearity -- Case study: Melbourne temperature data -- Curse of dimensionality -- Case study: body fat -- High dimensions -- Statistical summary -- R as a programming language and environment -- Help and information -- Names and search paths -- Administration and customisation -- Basic data types -- Output for objects -- Object inspection -- System inspection -- Complex data types -- Accessing components -- Data manipulation -- Operators -- Functions -- Debugging and profiling -- Control structures -- Input and output to data streams; external data -- Libraries, packages -- Mathematical operators and functions; linear algebra -- Model descriptions -- Graphic functions -- High-level graphics -- Low-level graphics -- Annotations and legends -- Graphic parameters and Llyout -- Elementary statistical functions -- Distributions, random numbers, densities... -- Computing on the language. 
520 |a Suitable for a compact course or self-study, Computational Statistics: An Introduction to R illustrates how to use the freely available R software package for data analysis, statistical programming, and graphics. Integrating R code and examples throughout, the text only requires basic knowledge of statistics and computing. This introduction covers one-sample analysis and distribution diagnostics, regression, two-sample problems and comparison of distributions, and multivariate analysis. It uses a range of examples to demonstrate how R can be employed to tackle statistical problems. In addition, the handy appendix includes a collection of R language elements and functions, serving as a quick reference and starting point to access the rich information that comes bundled with R. Accessible to a broad audience, this book explores key topics in data analysis, regression, statistical distributions, and multivariate statistics. Full of examples and with a color insert, it helps readers become familiar with R. 
650 0 |a R (Computer program language) 
650 0 |a Mathematical statistics  |x Data processing. 
650 7 |a Mathematical statistics  |x Data processing.  |2 fast  |0 (OCoLC)fst01012133. 
650 7 |a R (Computer program language)  |2 fast  |0 (OCoLC)fst01086207. 
776 1 |z 9781420086782. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=https://www.taylorfrancis.com/books/9780429146275  |z Full Text (via Taylor & Francis) 
907 |a .b116244720  |b 02-21-23  |c 01-22-21 
998 |a web  |b  - -   |c f  |d b   |e -  |f eng  |g flu  |h 0  |i 1 
915 |a M 
956 |a Taylor & Francis Ebooks 
956 |b Taylor & Francis All eBooks 
956 |a Taylor & Francis eBooks 
999 f f |i 41113750-f433-52c9-9db6-a38641b5814a  |s 9a4b7798-97bb-533d-9bd0-4abccab97668 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA276.45.R3 S29 2009  |h Library of Congress classification  |i web  |n 1