CR Manifolds and the Tangential Cauchy Riemann Complex / Al Boggess.

"CR Manifolds and the Tangential Cauchy Riemann Complex provides an elementary introduction to CR manifolds and the tangential Cauchy-Riemann Complex and presents some of the most important recent developments in the field. The first half of the book covers the basic definitions and background...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Taylor & Francis)
Main Author: Boggess, Al (Author)
Format: eBook
Language:English
Published: London : Taylor and Francis, 2017.
Edition:First edition.
Subjects:

MARC

LEADER 00000cam a2200000Mi 4500
001 b11627219
003 CoU
005 20220916050200.0
006 m o d
007 cr |||||||||||
008 170919s2017 enk o 000 0 eng d
020 |a 9781351457583  |q (e-book ;  |q PDF) 
020 |a 1351457586 
035 |a (OCoLC)tfe1004358073 
035 |a (OCoLC)1004358073 
037 |a tfe9781315140445 
040 |a CRCPR  |b eng  |e rda  |e pn  |c CRCPR  |d OCLCQ  |d UWO  |d TYFRS  |d OCLCO  |d OCLCF  |d OCLCQ  |d OCLCO  |d K6U  |d OCLCO 
049 |a GWRE 
050 4 |a QA649  |b .B644 2017 
100 1 |a Boggess, Al,  |e author. 
245 1 0 |a CR Manifolds and the Tangential Cauchy Riemann Complex /  |c Al Boggess. 
250 |a First edition. 
264 1 |a London :  |b Taylor and Francis,  |c 2017. 
300 |a 1 online resource :  |b text file, PDF. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
505 0 |a Part PART I: PRELIMINARIES -- chapter 1 Analysis on Euclidean Space -- chapter 2 Analysis on Manifolds -- chapter 3 Complexified Vectors and Forms -- chapter 4 The Frobenius Theorem -- chapter 5 Distribution Theory -- chapter 6 Currents -- part PART II: CR MANIFOWS -- chapter 7 CR Manifolds -- chapter 8 The Tangential Cauchy-Riemann Complex -- chapter 9 CR Functions and Maps -- chapter 10 The Levi Form -- chapter 11 The Imbeddability of CR Manifolds -- chapter 12 Further Results -- part PART III: THE HOLOMORPHIC EXTENSION OF CR FUNCTIONS -- chapter 13 An Approximation Theorem -- chapter 14 The Statement of the CR Extension Theorem -- chapter 15 The Analytic Disc Technique -- chapter 16 The Fourier Transform Technique -- chapter 17 Further Results -- part PART IV: SOLVABIUTY OF THE TANGENTIAL CAUCHY-RIEMANN COMPLEX -- chapter 18 Kernel Calculus -- chapter 19 Fundamental Solutions for the Exterior Derivative and Cauchy-Riemann Operators -- chapter 20 The Kernels of Henkin -- chapter 21 Fundamental Solutions for the Tangential Cauchy-Riemann Complex on a Convex Hypersurface -- chapter 22 A Local Solution to the Tangential Cauchy-Riemann Equations -- chapter 23 Local Nonsolvability of the Tangential Cauchy-Riemann Complex -- chapter 24 Further Results. 
520 2 |a "CR Manifolds and the Tangential Cauchy Riemann Complex provides an elementary introduction to CR manifolds and the tangential Cauchy-Riemann Complex and presents some of the most important recent developments in the field. The first half of the book covers the basic definitions and background material concerning CR manifolds, CR functions, the tangential Cauchy-Riemann Complex and the Levi form. The second half of the book is devoted to two significant areas of current research. The first area is the holomorphic extension of CR functions. Both the analytic disc approach and the Fourier transform approach to this problem are presented. The second area of research is the integral kernal approach to the solvability of the tangential Cauchy-Riemann Complex. CR Manifolds and the Tangential Cauchy Riemann Complex will interest students and researchers in the field of several complex variable and partial differential equations."--Provided by publisher. 
650 0 |a CR submanifolds. 
650 0 |a Cauchy-Riemann equations. 
650 7 |a Cauchy-Riemann equations.  |2 fast  |0 (OCoLC)fst00849799. 
650 7 |a CR submanifolds.  |2 fast  |0 (OCoLC)fst00843456. 
776 0 8 |z 9781315140445. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=https://www.taylorfrancis.com/books/9781315140445  |z Full Text (via Taylor & Francis) 
907 |a .b116272193  |b 02-21-23  |c 01-22-21 
998 |a web  |b  - -   |c f  |d b   |e -  |f eng  |g enk  |h 0  |i 1 
915 |a M 
956 |a Taylor & Francis Ebooks 
956 |b Taylor & Francis All eBooks 
956 |a Taylor & Francis eBooks 
999 f f |i 67044f5a-6e56-5bd0-a443-947f7ab638c9  |s 31e1fc44-8459-5e3d-b0bd-159ceb9fe7d7 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA649 .B644 2017  |h Library of Congress classification  |i web  |n 1