Tissue Phenomics: Profiling Cancer Patients for Treatment Decisions / editors, Ralf Huss, Günter Schmidt.

"In the age of digitization our society is transformed into a new state. In particular, machine intelligence dramatically elevates our capability to create and digest information. Naturally, healthcare is also impacted by this trend and will even be more transformed into a informatic driven dis...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Taylor & Francis)
Main Authors: Binnig, Gerd (Author), Huss, Ralf (Author), Schmidt, Günter (Author)
Format: eBook
Language:English
Published: Pan Stanford Publishing, 2018.
Edition:First edition.
Subjects:

MARC

LEADER 00000cam a2200000Mi 4500
001 b11633232
003 CoU
005 20220916050200.0
006 m o d
007 cr |||||||||||
008 180125s2018 xx a ob 001 0 eng d
019 |a 1021288795  |a 1031049960  |a 1125092153 
020 |a 9781351134279  |q (e-book) 
020 |a 1351134272 
020 |a 9781351134262  |q (e-book ;  |q PDF) 
020 |a 1351134264 
020 |a 9781351134248 
020 |a 1351134248 
020 |z 981477488X 
020 |z 9789814774888 
020 |a 9781351134255  |q (ePub ebook) 
020 |a 1351134256 
035 |a (OCoLC)tfe1020569442 
035 |a (OCoLC)1020569442  |z (OCoLC)1021288795  |z (OCoLC)1031049960  |z (OCoLC)1125092153 
037 |a tfe9781351134279 
040 |a CRCPR  |b eng  |e rda  |e pn  |c CRCPR  |d UAB  |d NLE  |d ERL  |d OCLCQ  |d OCLCO  |d MERER  |d YDX  |d OCLCF  |d OCLCQ  |d U3W  |d TYFRS  |d OCLCQ  |d S2H  |d OCLCO  |d UKAHL  |d UKMGB  |d OCLCO 
049 |a GWRE 
050 4 |a RC270.8 
100 1 |a Binnig, Gerd,  |e author. 
245 1 0 |a Tissue Phenomics: Profiling Cancer Patients for Treatment Decisions /  |c editors, Ralf Huss, Günter Schmidt. 
250 |a First edition. 
264 1 |b Pan Stanford Publishing,  |c 2018. 
300 |a 1 online resource :  |b text file, PDF. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
504 |a Includes bibliographical references and index. 
505 0 0 |t Chapter 1 Introduction to Tissue Phenomics /  |r Ralf Huss Gerd Binnig Günter Schmidt Martin Baatz Johannes Zimmermann --  |t chapter 2 Image Analysis for Tissue Phenomics /  |r Johannes Zimmermann Keith E. Steele Brian Laffin René Korn Jan Lesniak Tobias Wiestler Martin Baatz --  |t chapter 3 Context-Driven Image Analysis: Cognition Network Language /  |r Gerd Binnig --  |t chapter 4 Machine Learning: A Data-Driven Approach to Image Analysis /  |r Nicolas Brieu Maximilian Baust Nathalie Harder Katharina Nekolla Armin Meier GünterSchmidt --  |t chapter 5 Image-Based Data Mining /  |r Ralf Schönmeyer Arno Schäpe Günter Schmidt --  |t chapter 6 Bioinformatics /  |r Sriram Sridhar Brandon W. Higgs Sonja Althammer --  |t chapter 7 Applications of tissue phenomics /  |r Johannes Zimmermann Nathalie Harder Brian Laffin --  |t chapter 8 Tissue Phenomics For Diagnostic Pathology /  |r Maria Athelogou Ralf Huss --  |t chapter 9 Digital Pathology: Path into the Future /  |r Peter D. Caie David J. Harrison --  |t chapter 10 Tissue Phenomics in Clinical Development and Clinical Decision Support /  |r Florian Leiß Thomas Heydler. 
520 2 |a "In the age of digitization our society is transformed into a new state. In particular, machine intelligence dramatically elevates our capability to create and digest information. Naturally, healthcare is also impacted by this trend and will even be more transformed into a informatic driven discipline in the future. In the most important area of histo-pathology, the interpretation of tissue slices from cancer patients, informatics will have an early and huge impact on treatment decisions and probably will act as the leading discipline for this transformation in medicine. Tissue Phenomics provides a comprehensive methodology aiming at the discovery of the most accurate tissue-based decision support algorithm by close integration of assay development, image analysis and bioinformatics, and optimization feedback loops. In this book the methodology of Tissue Phenomics and its benefits and wealth's are described. The different components of Tissue Phenomics are explained in the different chapters. In the chapters 2 to 4 of this book different authors describe various approaches on how to convert the wealth of tissue slide pixel data into mineable information using knowledge-based and data-driven image analysis methods. Subsequently, the datafication of images and the bioinformatics part plays a crucial role in generating prognostic and predictive models for disease progression. The integration of other data sources such as genomics, radiomics and patient related information is also important and is described as well. As discussed in chapters 5 and 6, these models may classify patients in distinct groups such as those responding to a given therapy. Since Tissue Phenomics provides a huge set of potentially prognostic features (phenes), one focus of both chapters is robust feature selection methods by advanced Monte-Carlo cross validation algorithms. In chapter 7 we discuss multiple application examples of Tissue Phenomics in academic and commercial settings and its tremendous impact to advances in biomedical sciences. Building on the successes in research, chapters 8 and 9 discuss applications in clinical environments and provide a flavor to the future envision in chapter 10, where tissue datafication and subsequent patient profiling is part of every routine examination, with the goal to best match patients with the most successful therapy, as predicted by tissue phenes."--Provided by publisher. 
650 0 |a Histology, Pathological  |x Technological innovations. 
650 0 |a Cancer  |x Treatment  |x Technological innovations. 
650 7 |a Cancer  |x Treatment  |x Technological innovations.  |2 fast  |0 (OCoLC)fst00845556. 
700 1 |a Huss, Ralf,  |e author. 
700 1 |a Schmidt, Günter,  |e author. 
776 0 8 |z 9781351134262  |z 9781351134255. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=https://www.taylorfrancis.com/books/9781351134279  |z Full Text (via Taylor & Francis) 
907 |a .b116332323  |b 02-21-23  |c 01-23-21 
998 |a web  |b  - -   |c f  |d b   |e -  |f eng  |g xx   |h 0  |i 1 
915 |a M 
956 |a Taylor & Francis Ebooks 
956 |b Taylor & Francis All eBooks 
956 |a Taylor & Francis eBooks 
999 f f |i 6e8fc9f5-bff1-52fa-b52d-196aafffd0b9  |s ed20e364-f5b0-50fd-90e7-00e29c379ce0 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e RC270.8  |h Library of Congress classification  |i web  |n 1