|
|
|
|
LEADER |
00000cam a2200000Ma 4500 |
001 |
b11639140 |
003 |
CoU |
005 |
20220916050200.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
180628s2000 ne af ob 001 0 eng d |
010 |
|
|
|a 2002391897
|
019 |
|
|
|a 1249234018
|a 1260356745
|
020 |
|
|
|a 9781482283525
|q (electronic bk.)
|
020 |
|
|
|a 1482283522
|q (electronic bk.)
|
020 |
|
|
|z 9057024411
|
020 |
|
|
|z 9789057024412
|
020 |
|
|
|a 9780429078675
|q (electronic bk.)
|
020 |
|
|
|a 0429078676
|q (electronic bk.)
|
035 |
|
|
|a (OCoLC)tfe1041907703
|
035 |
|
|
|a (OCoLC)1041907703
|z (OCoLC)1249234018
|z (OCoLC)1260356745
|
037 |
|
|
|a tfe9780429078675
|
040 |
|
|
|a YDX
|b eng
|c YDX
|d OCLCQ
|d YDX
|d K6U
|d OCLCO
|d VT2
|d OCLCF
|d SFB
|d OCLCO
|d OCL
|
049 |
|
|
|a GWRE
|
050 |
|
4 |
|a TX571.P4
|b R463 2000
|
245 |
0 |
0 |
|a Residue analysis in food :
|b principles and applications /
|c edited by Michael O'Keeffe.
|
260 |
|
|
|a Amsterdam, the Netherlands :
|b Harwood Academic Publishers,
|c ©2000.
|
300 |
|
|
|a 1 online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent.
|
337 |
|
|
|a computer
|b c
|2 rdamedia.
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier.
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
|
|a Machine derived contents note: Preface xv -- Contributors xvii -- 1 Introduction 1 -- Michael O'Keeffe -- 1.1 Chemical Contamination of Food 1 -- 1.2 Residue Analysis 2 -- 1.3 Advances in Residue Analysis Methodologies 3 -- 1.4 The Sample is the Key 5 -- 1.5 Analytical Methods 6 -- 1.6 Special Issues in Residue Analysis 9 -- 1.7 Future 11 -- 1.8 References 11 -- 2 Primary Extraction Technologies 17 -- Marie-Louise Scippo and Guy Maghuin-Rogister -- 2.1 Introduction 17 -- 2.1.1 Types of residues 17 -- 2.1.2 Justification for primary extraction 18 -- 2.1.3 Difficulties in the analysis of residues 18 -- 2.2 Stages in the Analysis of Residues in Food 19 -- 2.2.1 Sampling 19 -- 2.2.2 Transfer to the laboratory and storage 19 -- 2.2.3 Thawing 20 -- 2.2.4 Internal standard 20 -- 2.2.5 Homogenisation 21 -- 2.2.5.1 Milk 21 -- 2.2.5.2 Eggs 21 -- 2.2.5.3 Tissues 22 -- 2.2.6 Enzyme/acid hydrolysis and digestion 22 -- 2.2.7 (Primary) Extraction 23 -- 2.2.8 Clean-up 25 -- 2.2.8.1 Elimination of water 25 -- 2.2.8.2 Elimination offat 25 -- 2.2.8.3 Elimination of proteins 25 -- 2.2.8.4 Elimination of co-extractives 26 -- 2.2.9 Solvent removal 26 -- 2.2.10 End point determination 26 -- 2.3 Liquid-Liquid Partitioning 26 -- 2.3.1 Theory 26 -- 2.3.1.1 Multiple extraction 27 -- 2.3.1.2 Influence of pH 28 -- 2.3.1.3 Influence of temperature 28 -- 2.3.1.4 Ion-pairing 28 -- 2.3.1.5 Salting-out 28 -- 2.4 Recovery Estimation in Quantitative Analysis 29 -- 2.5 Examples 29 -- 2.5.1 Pesticides 29 -- 2.5.2 P-Agonists 30 -- 2.5.3 Steroid hormones 31 -- 2.5.3.1 Androgens 32 -- 2.5.3.2 Oestrogens 32 -- 2.5.3.3 Progestagens 32 -- 2.5.4 Antibiotics 32 -- 2.5.4.1 Polyethers 32 -- 2.5.4.2 Macrolides 33 -- 2.5.4.3 Chloramphenicol 33 -- 2.5.5 Mycotoxins 33 -- 2.5.6 Further reading 33 -- 2.6 References 34 -- Sorbent Technologies : Principles and Applications 37 -- Steven A. Barker -- 3.1 Introduction 37 -- 3.2 Solid Phase Extraction 38 -- 3.2.1 Adsorption mode 38 -- 3.2.2 Size exclusion or permeation mode 39 -- 3.2.3 Bonded phase partition mode 40 -- 3.3 Sorbent Technologies: Columns, Cartridges and Discs 43 -- 3.4 Solid Phase Microextraction 45 -- 3.5 Matrix Solid Phase Dispersion 45 -- 3.6 Characteristics of the MSPD Process 49 -- 3.6.1 Unique sample interactions 49 -- 3.6.2 The nature of the solid support and bonded phase 49 -- 3.6.3 Matrix modification 50 -- 3.6.4 Solvent elution 51 -- 3.6.5 The matrix effect 51 -- 3.7 Applications 52 -- 3.8 References 58 -- 4 Automated Extraction/Clean-Up Technologies 73 -- Alida A.M. Stolker, Saskia S. Sterk and Leendert A. van Ginkel -- 4.1 Introduction 73 -- 4.2 Automated Solid-Phase Extraction Techniques 74 -- 4.2.1 Principle 74 -- 4.2.2 Applications of automated solid-phase extraction techniques 76 -- 4.3 Column Switching Techniques 77 -- 4.3.1 Principle 77 -- 4.3.2 Applications of column-switching techniques 78 -- 4.3.2.1 Sample clean-up 78 -- 4.3.2.2 Sample enrichment 83 -- 4.4.
|
505 |
0 |
|
|a Supercritical Fluid Extraction (SFE) 84 -- 4.4.1 Principle 84 -- 4.4.2 Applications of SFE 88 -- 4.4.2.1 Introduction 88 -- 4.4.2.2 SFE of residues of analytes from 'non-fatty' matrices 89 -- 4.4.2.3 SFE of residues of analytes from fatty matrices 92 -- 4.4.2.4 SFE of residues of analytes from samples offat 98 -- 4.5 Conclusions 100 -- 4.6 References 101 -- 5 Immunochemical and Receptor Technologies 107 -- Willem Haasnoot and Robert Schilt -- 5.1 Introduction 107 -- 5.2 Specific Reagents 108 -- 5.2.1 Antibodies 108 -- 5.2.1.1 Antibody-antigen interaction 109 -- 5.2.1.2 Poly- or monoclonal, recombinant or anti-anti-idiotype 110 -- antibodies -- 5.2.1.3 Antibodies towards haptens 112 -- 5.2.2 Receptors 112 -- 5.2.2.1 Receptor binding 112 -- 5.2.2.2 Hormonal receptors 113 -- 5.2.2.3 Steroid hormone receptors 113 -- 5.3 Assay Formats and Applications 114 -- 5.3.1 Radioimmunoassay (RIA) 116 -- 5.3.2 Receptor assays 117 -- 5.3.2.1 Radio receptor assay (RRA) 117 -- 5.3.2.2 Microbial receptor assay 118 -- 5.3.2.3 Functional tests 119 -- 5.3.3 Enzyme-linked immunosorbent assay (ELISA) 119 -- 5.3.4 Sol particle immunoassay (SPIA) 121 -- 5.3.5 Enhanced enzyme immunoassays 123 -- 5.3.5.1 Avidin-biotin systems 123 -- 5.3.5.2 Chemiluminescence enzyme immunoassays (cEIA) 124 -- 5.3.5.3 Electro-chemiluminescence immunoassays 125 -- 5.3.6 Fluorescence immunoassays 125 -- 5.3.6.1 Fluorescence polarisation immunoassay (FPIA) 126 -- 5.3.6.2 Time-resolvedfluoroimmunoassay (TR-FIA) or dissociation 126 -- enhanced lanthanide fluoroimmunoassay (DELFIA) -- 5.3.6.3 Solid phase fluorescence immunoassay (SPFIA) 127 -- 5.3.7 Biosensors 127 -- 5.3.7.1 Biosensor applications 128 -- 5.4 Sample Preparation and Screening Assays 129 -- 5.5 Immunoaffinity Chromatography 132 -- 5.5.1 IAC columns 133 -- 5.5.1.1 Commercially available columns 133 -- 5.5.1.2 Column preparation 134 -- 5.5.1.3 Column characteristics 134 -- 5.5.2 IAC procedures 134 -- 5.5.3 IAC applications 135 -- 5.5.3.1 Mycotoxins 135 -- 5.5.3.2 Growth promoters 136 -- 5.5.3.3 Veterinary drugs and other analytes 136 -- 5.5.3.4 Pesticides and contaminants 137 -- 5.6 References 137 -- 6 High Performance Thin Layer Chromatography for Residue Analysis 145 -- Hubert E De Brabander and Katia De Wasch -- 6.1 Introduction 145 -- 6.2 The Four Steps of TLC 146 -- 6.2.1 Application 146 -- 6.2.2 Development 147 -- 6.2.2.1 The stationary phase 148 -- 6.2.2.2 The solvents 148 -- 6.2.2.3 Automated multiple development (AMD) 149 -- 6.2.3 Detection 149 -- 6.2.3.1 The visualisation 150 -- 6.2.3.2 The documentation 151 -- 6.2.4 Quantification 151 -- 6.3 Some Special Features of TLC 153 -- 6.3.1 Two-dimensional TLC 153 -- 6.3.2 4x4-TLC 154 -- 6.3.3 Anti-diagonal development 155 -- 6.3.4 Coupled layers 156 -- 6.3.5 Reaction TLC 157 -- 6.3.5.1 Derivatisation at the application site 157 -- 6.3.5.2 Other reactions at the application site 158 -- 6.3.6 Some additional advantages of TLC 158 -- 6.4 Quality Criteria for the Use of TLC in Residue Analysis 158 -- 6.4.1 Introduction 158 -- 6.4.2 Discussion of the quality criteria 159 -- 6.5 Comparison of TLC with other Methods for Residue Analysis 161 -- 6.6 Examples of TLC Methods in Residue Analysis 162 -- 6.6.1 TLC methods for illegal growth promoters 162 -- 6.6.1.1 Thyreostatic drugs 162 -- 6.6.1.2 Anabolic steroids 163 -- 6.6.1.3 Beta-agonists 164 -- 6.6.1.4 Corticosteroids 165 -- 6.6.2 TLC methods for antibacterials 164 -- 6.6.2.1 Sulphonamides 165 -- 6.6.2.2 Tetracyclines 165 -- 6.6.2.3 Polyether antibiotics 165 -- 6.6.2.4 Macrolide antibiotics 166 -- 6.6.3 TLC methods for other residues 166 -- 6.7 Is There a Future for TLC in Residue Analysis? 166 -- 6.7.1 Automation in TLC 167 -- 6.7.2 Enhancing specificity in TLC 167 -- 6.7.3 Tlc/Ms 168 -- 6.7.3.1 Direct TLC/MS 168 -- 6.7.3.2 TLC with additional hyphenated MS techniques 168 -- 6.8 Conclusion 169 -- 6.9 References 171 -- 7 Gas Chromatography 177 -- Bruno Le Bizec, Marie-Pierre Montrade and Francois Andre -- 7.1 Historical 177 -- 7.2 Introduction 178 -- 7.2.1 Definitions 178 -- 7.2.2 Phenomena involved 178 -- 7.2.3 Residue analysis 179 -- 7.3 Carrier Gas 180 -- 7.4 Injector 180 -- 7.4.1 Split injector 180 -- 7.4.2 Splitless injector 181 -- 7.4.3 Cold on-column injector 181 -- 7.4.4 De Ros injector 182 -- 7.4.5 Headspace injector 182 -- 7.4.6 Large volume injector 183 -- 7.5 Columns 184 -- 7.5.1 Three column types 184 -- 7.5.1.1 Packed columns 184 -- 7.5.1.2 Capillary columns 185 -- 7.5.1.3 530 /pm columns 185 -- 7.5.2 Stationary phases 186 -- 7.5.2.1 Glycol polyesters 186 -- 7.5.2.2 Glycol polyethers 186 -- 7.5.2.3 Silicones 187 -- 7.5.2.4 Apolar branched hydrocarbons 187 -- 7.5.3 Two dimensional gas chromatography 187 -- 7.6 Oven 188 -- 7.7 Detectors 189 -- 7.7.1 Thermal conductivity detector (TCD) 189 -- 7.7.2 Flame ionisation detector (FID) 189 -- 7.7.3 Nitrogen phosphorus (thermionic) detector (NPD) 190 -- 7.7.4 Electron capture detector (ECD) 191 -- 7.7.5 Flame photometric detector (FPD) 193 -- 7.7.6 Other detectors 195 -- 7.7.7 Infrared detector 196 -- 7.7.7.1 Infrared spectrometry 196 -- 7.7.7.2 Coupling of GC with the IR detector 197 -- 7.7.8 Atomic detector 198 -- 7.7.8.1 Atomic spectrometry 198 -- 7.7.8.2 Coupling of GC with the atomic (AAS) detector 198 -- 7.7.9 Mass detector 200 -- 7.7.9.1 Mass spectrometry 200 -- 7.7.9.2 lonisation processes 200 -- 7.7.9.2.1 Electron impact (El) mode 200 -- 7.7.9.2.2 Chemical ionisation -- positive mode 201 -- 7.7.9.2.3 Chemical ionisation -- negative mode 202 -- 7.7.9.3 Mass detectors 204 -- 7.7.9.3.1 Quadrupole 204 -- 7.7.9.3.2 Ion trap 205 -- 7.7.9.3.3 Double focusing spectrometers 207 -- 7.7.9.4 Acquisition methods 208 -- 7.7.9.4.1 SCAN mode 208 -- 7.7.9.4.2 SIM (LR and HR) mode 208 -- 7.7.9.4.3 SRM mode 209 -- 7.8 Derivatisation 211 -- 7.8.1 Principle and effects of derivatisation 211 -- 7.8.1.1 Principle 211 -- 7.8.1.2 Separation effects 211 -- 7.8.1.3 Detection (ECD, NPD, FPD, MS) effects 211 -- 7.8.2 Classical derivatisation reactions 212 -- 7.8.2.1 Alkylation 212 -- 7.8.2.2 Acylation 213 -- 7.8.2.3 Silylation 214 -- 7.8.2.4 Condensation 215 -- 7.9 Conclusion 217 -- 7.10 References 218 -- 8 High Performance Liquid Chromatography 237 -- Sharon Porter and Raj Patel -- 8.1 Introduction 237 -- 8.2 A Race to the Finish: The Chromatographic Process 237 -- 8.2.1 The capacity factor (thermodynamic effects) 238 -- 8.2.2 Efficiency and resolution 239 -- 8.2.3 Band broadening (kinetic effects) 240 -- 8.3 Simplifying the Mixture: Modes of Chromatography 241 -- 8.3.1 Adsorption chromatography 24.
|
650 |
|
0 |
|a Pesticide residues in food.
|
650 |
|
0 |
|a Veterinary drug residues.
|
650 |
|
0 |
|a Food
|x Analysis.
|
650 |
|
7 |
|a Food
|x Analysis.
|2 fast
|0 (OCoLC)fst00930460.
|
650 |
|
7 |
|a Pesticide residues in food.
|2 fast
|0 (OCoLC)fst01058996.
|
650 |
|
7 |
|a Veterinary drug residues.
|2 fast
|0 (OCoLC)fst01165910.
|
700 |
1 |
|
|a O'Keeffe, Michael,
|c Ph. D.
|
776 |
0 |
8 |
|c Original
|z 9057024411
|z 9789057024412
|w (DLC) 2002391897
|w (OCoLC)44971284.
|
856 |
4 |
0 |
|u https://colorado.idm.oclc.org/login?url=https://www.taylorfrancis.com/books/9780429078675
|z Full Text (via Taylor & Francis)
|
907 |
|
|
|a .b116391406
|b 02-21-23
|c 01-23-21
|
998 |
|
|
|a web
|b - -
|c f
|d b
|e -
|f eng
|g ne
|h 0
|i 1
|
915 |
|
|
|a M
|
956 |
|
|
|a Taylor & Francis Ebooks
|
956 |
|
|
|b Taylor & Francis All eBooks
|
956 |
|
|
|a Taylor & Francis eBooks
|
999 |
f |
f |
|i 901072fd-9f65-5742-9732-e52c7662bdc9
|s 35cdaadd-2e8c-5d87-a06c-40a8afeb27af
|
952 |
f |
f |
|p Can circulate
|a University of Colorado Boulder
|b Online
|c Online
|d Online
|e TX571.P4 R463 2000
|h Library of Congress classification
|i web
|n 1
|