Finite geometries / György Kiss, Tamás Szőnyi.

Finite Geometries stands out from recent textbooks about the subject of finite geometries by having a broader scope. The authors thoroughly explain how the subject of finite geometries is a central part of discrete mathematics. The text is suitable for undergraduate and graduate courses. Additionall...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Taylor & Francis)
Main Authors: Kiss, György (Mathematics professor) (Author), Szőnyi, T. (Author)
Format: eBook
Language:English
Published: Boca Raton : CRC Press LLC, 2020.
Subjects:

MARC

LEADER 00000cam a2200000xi 4500
001 b11657616
003 CoU
005 20210115100346.4
006 m o d
007 cr |||||||||||
008 190803t20202020flu ob 001 0 eng d
019 |a 1202481510 
020 |a 9781498721660  |q (electronic bk.) 
020 |a 1498721664  |q (electronic bk.) 
020 |a 9781315120072  |q (electronic bk.) 
020 |a 1315120070  |q (electronic bk.) 
020 |a 9781351636841  |q (electronic bk. ;  |q Mobipocket) 
020 |a 1351636847  |q (electronic bk. ;  |q Mobipocket) 
020 |a 9781351646383  |q (electronic bk. ;  |q EPUB) 
020 |a 1351646389  |q (electronic bk. ;  |q EPUB) 
035 |a (OCoLC)tfe1111487411 
035 |a (OCoLC)1111487411  |z (OCoLC)1202481510 
037 |a tfe9781315120072 
040 |a EBLCP  |b eng  |e rda  |e pn  |c EBLCP  |d TYFRS  |d EBLCP  |d OCLCQ  |d TYFRS  |d N$T  |d OCLCF  |d OCLCQ  |d OSU  |d OCLCO  |d OCLCQ 
049 |a GWRE 
050 4 |a QA167.2  |b .K57 2020eb 
100 1 |a Kiss, György  |c (Mathematics professor),  |e author.  |0 http://id.loc.gov/authorities/names/n2019015548. 
245 1 0 |a Finite geometries /  |c György Kiss, Tamás Szőnyi. 
264 1 |a Boca Raton :  |b CRC Press LLC,  |c 2020. 
264 4 |c ©2020. 
300 |a 1 online resource (347 pages) 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
504 |a Includes bibliographical references and index. 
505 0 |a Definition of projective planes, examples -- Basic properties of collineations and the Theorem of Baer -- Coordinatization of projective planes -- Projective spaces of higher dimensions -- Higher dimensional representations -- Arcs, ovals and blocking sets -- (k, n)-arcs and multiple blocking sets -- Algebraic curves and finite geometry -- Arcs, caps, unitals and blockin gsets in higher dimensional spaces -- Generalized polygons, Möbius planes -- Hyperovals -- Some applications of finite geometry in combinatorics -- Some applications of finite geometry in coding theory and cryptography. 
520 |a Finite Geometries stands out from recent textbooks about the subject of finite geometries by having a broader scope. The authors thoroughly explain how the subject of finite geometries is a central part of discrete mathematics. The text is suitable for undergraduate and graduate courses. Additionally, it can be used as reference material on recent works. The authors examine how finite geometries' applicable nature led to solutions of open problems in different fields, such as design theory, cryptography and extremal combinatorics. Other areas covered include proof techniques using polynomials in case of Desarguesian planes, and applications in extremal combinatorics, plus, recent material and developments. 
545 0 |a Gyṟgy Kiss is an associate professor of Mathematics at Eṯvs̲ Lorǹd University (ELTE), Budapest, Hungary, and also at the University of Primorska, Koper, Slovenia. He is a senior researcher of the MTA-ELTE Geometric and Algebraic Combinatorics Research group. His research interests are in finite and combinatorial geometry. Tams̀ Szőnyi is a Professor at the Department of Computer Science in Eṯvs̲ Lorǹd University, Budapest, Hungary, and also at the University of Primorska, Koper, Slovenia. He is the head of the MTA-ELTE Geometric and Algebraic Combinatorics Research Group. His primary research interests include finite geometry, combinatorics, coding theory and block designs. 
588 0 |a Print version record. 
650 0 |a Finite geometries.  |0 http://id.loc.gov/authorities/subjects/sh85048353. 
650 0 |a Combinatorial geometry.  |0 http://id.loc.gov/authorities/subjects/sh85028805. 
650 7 |a Combinatorial geometry.  |2 fast  |0 (OCoLC)fst00868972. 
650 7 |a Finite geometries.  |2 fast  |0 (OCoLC)fst00924907. 
700 1 |a Szőnyi, T.,  |e author.  |0 http://id.loc.gov/authorities/names/nr97000079  |1 http://isni.org/isni/0000000116174898. 
776 0 8 |i Print version:  |a Kiss, György (Mathematics professor).  |t Finite geometries.  |d Boca Raton, FL : CRC Press, Taylor & Francis Group, 2020  |z 9781498721653  |w (DLC) 2019013231  |w (OCoLC)1097366574. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=https://www.taylorfrancis.com/books/9781315120072  |z Full Text (via Taylor & Francis) 
907 |a .b116576169  |b 10-19-21  |c 01-23-21 
998 |a web  |b 09-14-21  |c b  |d b   |e -  |f eng  |g flu  |h 0  |i 1 
907 |a .b116576169  |b 10-05-21  |c 01-23-21 
907 |a .b116576169  |b 09-14-21  |c 01-23-21 
944 |a MARS - RDA ENRICHED 
915 |a I 
956 |a Taylor & Francis eBooks 
956 |b Taylor & Francis All eBooks 
999 f f |i 9d241991-3356-5f3b-8a32-81402125b969  |s 64f79251-a1a0-523f-9d85-35d163e766b7 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA167.2 .K57 2020eb  |h Library of Congress classification  |i web  |n 1