Federated learning : privacy and incentive / Qiang Yang, Lixin Fan, Han Yu (eds.)

This book provides a comprehensive and self-contained introduction to Federated Learning, ranging from the basic knowledge and theories to various key applications, and the privacy and incentive factors are the focus of the whole book. This book is timely needed since Federated Learning is getting p...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Springer)
Other Authors: Yang, Qiang, 1961- (Editor), Fan, Lixin (Editor), Yu, Han (Editor)
Format: eBook
Language:English
Published: Cham : Springer, [2020]
Series:Lecture notes in computer science ; 12500.
Lecture notes in computer science. Lecture notes in artificial intelligence.
Subjects:

MARC

LEADER 00000cam a2200000xi 4500
001 b11738676
003 CoU
005 20210212104514.8
006 m o d
007 cr |||||||||||
008 201205s2020 sz o 001 0 eng d
019 |a 1225198763  |a 1227390800 
020 |a 9783030630768  |q (electronic bk.) 
020 |a 3030630765  |q (electronic bk.) 
020 |z 9783030630751 
024 7 |a 10.1007/978-3-030-63076-8 
035 |a (OCoLC)spr1225545495 
035 |a (OCoLC)1225545495  |z (OCoLC)1225198763  |z (OCoLC)1227390800 
037 |a spr978-3-030-63076-8 
040 |a EBLCP  |b eng  |e rda  |c EBLCP  |d GW5XE  |d OCLCO  |d LEATE  |d UPM  |d OCLCF 
049 |a GWRE 
050 4 |a Q325.5 
245 0 0 |a Federated learning :  |b privacy and incentive /  |c Qiang Yang, Lixin Fan, Han Yu (eds.) 
264 1 |a Cham :  |b Springer,  |c [2020] 
300 |a 1 online resource (291 pages) 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
490 1 |a Lecture notes in computer science. Lecture notes in artificial intelligence ;  |v 12500. 
500 |a Includes author index. 
505 0 |a Privacy -- Threats to Federated Learning -- Rethinking Gradients Safety in Federated Learning -- Rethinking Privacy Preserving Deep Learning: How to Evaluate and Thwart Privacy Attacks -- Task-Agnostic Privacy-Preserving Representation Learning via Federated Learning -- Large-Scale Kernel Method for Vertical Federated Learning -- Towards Byzantine-resilient Federated Learning via Group-wise Robust Aggregation -- Federated Soft Gradient Boosting Machine for Streaming Data -- Dealing with Label Quality Disparity In Federated Learning -- Incentive -- FedCoin: A Peer-to-Peer Payment System for Federated Learning -- Efficient and Fair Data Valuation for Horizontal Federated Learning -- A Principled Approach to Data Valuation for Federated Learning -- A Gamified Research Tool for Incentive Mechanism Design in Federated Learning -- Budget-bounded Incentives for Federated Learning -- Collaborative Fairness in Federated Learning -- A Game-Theoretic Framework for Incentive Mechanism Design in Federated Learning -- Applications -- Federated Recommendation Systems -- Federated Learning for Open Banking -- Building ICU In-hospital Mortality Prediction Model with Federated Learning -- Privacy-preserving Stacking with Application to Cross-organizational Diabetes Prediction. 
520 |a This book provides a comprehensive and self-contained introduction to Federated Learning, ranging from the basic knowledge and theories to various key applications, and the privacy and incentive factors are the focus of the whole book. This book is timely needed since Federated Learning is getting popular after the release of the General Data Protection Regulation (GDPR). As Federated Learning aims to enable a machine model to be collaboratively trained without each party exposing private data to others. This setting adheres to regulatory requirements of data privacy protection such as GDPR. This book contains three main parts. First, it introduces different privacy-preserving methods for protecting a Federated Learning model against different types of attacks such as Data Leakage and/or Data Poisoning. Second, the book presents incentive mechanisms which aim to encourage individuals to participate in the Federated Learning ecosystems. Last but not the least, this book also describes how Federated Learning can be applied in industry and business to address data silo and privacy-preserving problems. The book is intended for readers from both academia and industries, who would like to learn federated learning from scratch, practice its implementation, and apply it in their own business. Readers are expected to have some basic understanding of linear algebra, calculus, and neural network. Additionally, domain knowledge in FinTech and marketing are preferred. 
588 |a Description based upon print version of record. 
650 0 |a Machine learning.  |0 http://id.loc.gov/authorities/subjects/sh85079324. 
650 0 |a Federated database systems.  |0 http://id.loc.gov/authorities/subjects/sh2010014062. 
650 7 |a Application software.  |2 fast  |0 (OCoLC)fst00811706. 
650 7 |a Artificial intelligence.  |2 fast  |0 (OCoLC)fst00817247. 
650 7 |a Computer networks.  |2 fast  |0 (OCoLC)fst00872297. 
650 7 |a Computer security.  |2 fast  |0 (OCoLC)fst00872484. 
700 1 |a Yang, Qiang,  |d 1961-  |e editor.  |0 http://id.loc.gov/authorities/names/n96120384  |1 http://isni.org/isni/0000000109384205. 
700 1 |a Fan, Lixin,  |e editor.  |0 http://id.loc.gov/authorities/names/no2011031312  |1 http://isni.org/isni/0000000118298114. 
700 1 |a Yu, Han,  |e editor.  |0 http://id.loc.gov/authorities/names/nr91022765  |1 http://isni.org/isni/0000000382027284. 
776 0 8 |i Print version:  |a Yang, Qiang  |t Federated Learning : Privacy and Incentive  |d Cham : Springer International Publishing AG,c2021  |z 9783030630751. 
830 0 |a Lecture notes in computer science ;  |v 12500.  |0 http://id.loc.gov/authorities/names/n42015162. 
830 0 |a Lecture notes in computer science.  |p Lecture notes in artificial intelligence.  |0 http://id.loc.gov/authorities/names/n86736436. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-030-63076-8  |z Full Text (via Springer) 
907 |a .b117386765  |b 05-04-22  |c 02-16-21 
998 |a web  |b 02-28-21  |c b  |d b   |e -  |f eng  |g sz   |h 0  |i 1 
907 |a .b117386765  |b 03-01-21  |c 02-16-21 
944 |a MARS - RDA ENRICHED 
915 |a I 
956 |a Springer e-books 
956 |b Springer Computer Science eBooks 2020 English+International 
999 f f |i da476407-42f2-5090-bfcf-70a60a02deab  |s f5b10107-3dc1-57a3-b8a4-559efd5fd437 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e Q325.5  |h Library of Congress classification  |i Ebooks, Prospector  |n 1