MARC

LEADER 00000nam a22000003u 4500
001 b11770939
003 CoU
005 20210309000000.0
006 m o d f
007 cr |||||||||||
008 210329e20190708||| o| f0|||||eng|d
035 |a (TOE)ost1767456 
035 |a (TOE)1767456 
040 |a TOE  |c TOE 
049 |a GDWR 
245 0 0 |a Spin-Orbit Torque Switching of a Nearly Compensated Ferrimagnet by Topological Surface States. 
260 |a Washington, D.C. :  |b United States. Department of Energy. Office of Science ;  |a Oak Ridge, Tenn. :  |b Distributed by the Office of Scientific and Technical Information, U.S. Department of Energy,  |c 2019. 
300 |a Size: Article No. 1901681 :  |b digital, PDF file. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
500 |a Published through Scitech Connect. 
500 |a 07/08/2019. 
500 |a "Journal ID: ISSN 0935-9648." 
500 |a Wu, Hao ; Xu, Yong ; Deng, Peng ; Pan, Quanjun ; Razavi, Seyed Armin ; Wong, Kin ; Huang, Li ; Dai, Bingqian ; Shao, Qiming ; Yu, Guoqiang ; et al;  
520 3 |a Utilizing spin-orbit torque (SOT) to switch a magnetic moment provides a promising route for low-power-dissipation spintronic devices. Here, the SOT switching of a nearly compensated ferrimagnet Gd<sub>x</sub>(FeCo)<sub>1-x</sub> by the topological insulator [Bi<sub>2</sub>Se<sub>3</sub> and (BiSb)<sub>2</sub>Te<sub>3</sub>] is investigated at room temperature. The switching current density of (BiSb)<sub>2</sub>Te<sub>3</sub> (1.20 × 10<sup>5</sup> A cm<sup>-2</sup>) is more than one order of magnitude smaller than that in conventional heavy-metal-based structures, which indicates the ultrahigh efficiency of charge-spin conversion (>1) in topological surface states. By tuning the net magnetic moment of Gd<sub>x</sub>(FeCo)<sub>1-x</sub> via changing the composition, the SOT efficiency has a significant enhancement (6.5 times) near the magnetic compensation point, and at the same time the switching speed can be as fast as several picoseconds. Combining the topological surface states and the nearly compensated ferrimagnets provides a promising route for practical energy-efficient and high-speed spintronic devices. 
536 |b SC0012670. 
536 |b 1611570. 
536 |b 2017YFA0206200. 
536 |b 11434014. 
650 7 |a 36 materials science  |2 local. 
650 7 |a Phonons  |2 local. 
650 7 |a Thermal conductivity  |2 local. 
650 7 |a Thermoelectric  |2 local. 
650 7 |a Spin dynamics  |2 local. 
650 7 |a Spintronics  |2 local. 
650 7 |a Topological insulators  |2 local. 
650 7 |a Ferrimagnets  |2 local. 
650 7 |a Spin-orbit torque  |2 local. 
650 7 |a Current-induced magnetization switching  |2 local. 
710 2 |a United States. Department of Energy. Office of Basic Energy. Energy Frontier Research Centers (EFRC).  |4 res. 
710 2 |a United States. Department of Energy. Office of Science.  |4 spn. 
710 1 |a United States.  |b Department of Energy.  |b Office of Scientific and Technical Information  |4 dst. 
856 4 0 |u https://www.osti.gov/servlets/purl/1767456  |z Full Text (via OSTI) 
907 |a .b117709396  |b 04-01-21  |c 04-01-21 
998 |a web  |b 04-01-21  |c f  |d m   |e p  |f eng  |g    |h 0  |i 1 
956 |a Information bridge 
999 f f |i a9bc022e-f084-549d-bc80-faa3d5055e82  |s 881e549d-c992-54e2-8149-e29c14fa4f48 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |i web  |n 1