MARC

LEADER 00000nam a22000003u 4500
001 b11771284
003 CoU
005 20210322000000.0
006 m o d f
007 cr |||||||||||
008 210329e20140421||| o| f0|||||eng|d
035 |a (TOE)ost1628107 
035 |a (TOE)1628107 
040 |a TOE  |c TOE 
049 |a GDWR 
245 0 0 |a Genetic basis for nitrate resistance in Desulfovibrio strains. 
260 |a Washington, D.C. :  |b United States. Department of Energy. Office of Science ;  |a Oak Ridge, Tenn. :  |b Distributed by the Office of Scientific and Technical Information, U.S. Department of Energy,  |c 2014. 
300 |a Size: Articel No. 153 :  |b digital, PDF file. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
500 |a Published through Scitech Connect. 
500 |a 04/21/2014. 
500 |a "Journal ID: ISSN 1664-302X." 
500 |a Korte, Hannah L. ; Fels, Samuel R. ; Christensen, Geoff A. ; Price, Morgan N. ; Kuehl, Jennifer V. ; Zane, Grant M. ; Deutschbauer, Adam M. ; Arkin, Adam P. ; Wall, Judy D. ;  
520 3 |a Nitrate is an inhibitor of sulfate-reducing bacteria (SRB). In petroleum production sites, amendments of nitrate and nitrite are used to prevent SRB production of sulfide that causes souring of oil wells. A better understanding of nitrate stress responses in the model SRB, Desulfovibrio vulgaris Hildenborough and Desulfovibrio alaskensis G20, will strengthen predictions of environmental outcomes of nitrate application. Nitrate inhibition of SRB has historically been considered to result from the generation of small amounts of nitrite, to which SRB are quite sensitive. Here we explored the possibility that nitrate might inhibit SRB by a mechanism other than through nitrite inhibition. We found that nitrate-stressed D. vulgaris cultures grown in lactate-sulfate conditions eventually grew in the presence of high concentrations of nitrate, and their resistance continued through several subcultures. Nitrate consumption was not detected over the course of the experiment, suggesting adaptation to nitrate. With high-throughput genetic approaches employing TnLE-seq for D. vulgaris and a pooled mutant library of D. alaskensis, we determined the fitness of many transposon mutants of both organisms in nitrate stress conditions. We found that several mutants, including homologs present in both strains, had a greatly increased ability to grow in the presence of nitrate but not nitrite. The mutated genes conferring nitrate resistance included the gene encoding the putative Rex transcriptional regulator (DVU0916/Dde_2702), as well as a cluster of genes (DVU0251-DVU0245/Dde_0597-Dde_0605) that is poorly annotated. Follow-up studies with individual D. vulgaris transposon and deletion mutants confirmed high-throughput results. We conclude that, in D. vulgaris and D. alaskensis, nitrate resistance in wild-type cultures is likely conferred by spontaneous mutations. Furthermore, the mechanisms that confer nitrate resistance may be different from those that confer nitrite resistance. 
536 |b AC02-05CH11231. 
650 7 |a 59 basic biological sciences  |2 local. 
650 7 |a Microbiology  |2 local. 
650 7 |a Sulfate-reducing bacteria  |2 local. 
650 7 |a Sulfide control  |2 local. 
650 7 |a Desulfovibrio  |2 local. 
650 7 |a Nitrite  |2 local. 
650 7 |a Nitrate inhibition  |2 local. 
650 7 |a Stress response  |2 local. 
650 7 |a Functional genomics  |2 local. 
650 7 |a Fitness profiling  |2 local. 
710 2 |a Lawrence Berkeley National Laboratory.  |4 res. 
710 2 |a United States. Department of Energy. Office of Science.  |4 spn. 
710 1 |a United States.  |b Department of Energy.  |b Office of Scientific and Technical Information  |4 dst. 
856 4 0 |u https://www.osti.gov/servlets/purl/1628107  |z Full Text (via OSTI) 
907 |a .b11771284x  |b 04-01-21  |c 04-01-21 
998 |a web  |b 04-01-21  |c f  |d m   |e p  |f eng  |g    |h 0  |i 1 
956 |a Information bridge 
999 f f |i 9b680605-2746-5440-9f1a-7bcc62d7b723  |s 049d64d1-2af1-5920-a450-5d3924f46ea4 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |i web  |n 1