Genome-scale models of metabolism and gene expression extend and refine growth phenotype prediction.

Saved in:
Bibliographic Details
Online Access: Full Text (via OSTI)
Corporate Author: Lawrence Berkeley National Laboratory (Researcher)
Format: eBook
Language:English
Published: Washington, D.C. : Oak Ridge, Tenn. : United States. Department of Energy. Office of Science ; Distributed by the Office of Scientific and Technical Information, U.S. Department of Energy, 2013.
Subjects:

MARC

LEADER 00000nam a22000003u 4500
001 b11771405
003 CoU
005 20210322000000.0
006 m o d f
007 cr |||||||||||
008 210329e20130101||| o| f0|||||eng|d
035 |a (TOE)ost1623810 
035 |a (TOE)1623810 
040 |a TOE  |c TOE 
049 |a GDWR 
245 0 0 |a Genome-scale models of metabolism and gene expression extend and refine growth phenotype prediction. 
260 |a Washington, D.C. :  |b United States. Department of Energy. Office of Science ;  |a Oak Ridge, Tenn. :  |b Distributed by the Office of Scientific and Technical Information, U.S. Department of Energy,  |c 2013. 
300 |a Size: Article No. 693 :  |b digital, PDF file. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
500 |a Published through Scitech Connect. 
500 |a 01/01/2013. 
500 |a "Journal ID: ISSN 1744-4292." 
500 |a O'Brien, Edward J. ; Lerman, Joshua A. ; Chang, Roger L. ; Hyduke, Daniel R. ; Palsson, Bernhard Ø. ;  
520 3 |a Growth is a fundamental process of life. Growth requirements are well-characterized experimentally for many microbes; however, we lack a unified model for cellular growth. Such a model must be predictive of events at the molecular scale and capable of explaining the high-level behavior of the cell as a whole. Here, we construct an ME-Model for Escherichia coli?a genome-scale model that seamlessly integrates metabolic and gene product expression pathways. The model computes B80% of the functional proteome (by mass), which is used by the cell to support growth under a given condition. Metabolism and gene expression are interdependent processes that affect and constrain each other. We formalize these constraints and apply the principle of growth optimization to enable the accurate prediction of multi-scale phenotypes, ranging from coarse-grained (growth rate, nutrient uptake, by-product secretion) to fine-grained (metabolic fluxes, gene expression levels). Our results unify many existing principles developed to describe bacterial growth. 
536 |b AC02-05CH11231. 
650 7 |a 59 basic biological sciences  |2 local. 
650 7 |a Biochemistry & molecular biology  |2 local. 
650 7 |a Gene expression  |2 local. 
650 7 |a Genome-scale  |2 local. 
650 7 |a Metabolism  |2 local. 
650 7 |a Molecular efficiency  |2 local. 
650 7 |a Optimality  |2 local. 
650 7 |a Metabolic and regulatory networks  |2 local. 
650 7 |a Computational methods  |2 local. 
710 2 |a Lawrence Berkeley National Laboratory.  |4 res. 
710 2 |a United States. Department of Energy. Office of Science.  |4 spn. 
710 1 |a United States.  |b Department of Energy.  |b Office of Scientific and Technical Information  |4 dst. 
856 4 0 |u https://www.osti.gov/servlets/purl/1623810  |z Full Text (via OSTI) 
907 |a .b117714057  |b 04-01-21  |c 04-01-21 
998 |a web  |b 04-01-21  |c f  |d m   |e p  |f eng  |g    |h 0  |i 1 
956 |a Information bridge 
999 f f |i 77d5f73e-cdc3-5f9f-b164-8a6f98ff9f44  |s 8c625812-49da-5a68-ab3c-a475fb6fe22b 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |i web  |n 1