A Model-Based Imputation Procedure for Multilevel Regression Models with Random Coefficients, Interaction Effects, and Non-Linear Terms [electronic resource] / Craig K. Enders, Han Du and Brian T. Keller.

Despite the broad appeal of missing data handling approaches that assume a missing at random (MAR) mechanism (e.g., multiple imputation and maximum likelihood estimation), some very common analysis models in the behavioral science literature are known to cause bias-inducing problems for these approa...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via ERIC)
Main Authors: Enders, Craig K., Du, Han (Author), Keller, Brian T. (Author)
Format: Electronic eBook
Language:English
Published: [Place of publication not identified] : Distributed by ERIC Clearinghouse, 2019.
Subjects:

MARC

LEADER 00000nam a22000002u 4500
001 b11873027
003 CoU
006 m o d f
007 cr |||||||||||
008 190701s2019 xx |||| ot ||| ||eng d
005 20241104185921.1
035 |a (ERIC)ed599373 
035 |a (MvI) 7C000000579071 
040 |a ericd  |b eng  |c MvI  |d MvI 
099 |a ED599373 
100 1 |a Enders, Craig K.  |0 id.loc.gov/authorities/names/n2010018003  |0 http://id.loc.gov/authorities/names/n2010018003  |1 http://isni.org/isni/0000000385075417 
245 1 2 |a A Model-Based Imputation Procedure for Multilevel Regression Models with Random Coefficients, Interaction Effects, and Non-Linear Terms  |h [electronic resource] /  |c Craig K. Enders, Han Du and Brian T. Keller. 
264 1 |a [Place of publication not identified] :  |b Distributed by ERIC Clearinghouse,  |c 2019. 
300 |a 1 online resource (113 pages) 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
500 |a Sponsoring Agency: Institute of Education Sciences (edition).  |5 ericd. 
500 |a Contract Number: R305D150056.  |5 ericd. 
500 |a Abstractor: As Provided.  |5 ericd. 
516 |a Text (Reports, Research) 
520 |a Despite the broad appeal of missing data handling approaches that assume a missing at random (MAR) mechanism (e.g., multiple imputation and maximum likelihood estimation), some very common analysis models in the behavioral science literature are known to cause bias-inducing problems for these approaches. Regression models with incomplete interactive or polynomial effects are a particularly important example because they are among the most common analyses in behavioral science research applications. In the context of single-level regression, fully Bayesian (model-based) imputation approaches have shown great promise with these popular analysis models. The purpose of this paper is to extend model-based imputation to multilevel models with up to three levels, including functionality for mixtures of categorical and continuous variables. Computer simulation results suggest that this new approach can be quite effective when applied to multilevel models with random coefficients and interaction effects. In most scenarios that we examined, imputation-based parameter estimates were quite accurate and tracked closely with those of the complete data. The new procedure is available in the Blimp software application for macOS, Windows, and Linux, and the paper includes a data analysis example illustrating its use. [This is the online version of an article published in "Psychological Methods."] 
524 |a Grantee Submission.  |2 ericd. 
650 0 7 |a Hierarchical Linear Modeling.  |2 ericd 
650 0 7 |a Regression (Statistics)  |2 ericd 
650 0 7 |a Predictor Variables.  |2 ericd 
650 0 7 |a Bayesian Statistics.  |2 ericd 
650 0 7 |a Statistical Analysis.  |2 ericd 
700 1 |a Du, Han,  |e author. 
700 1 |a Keller, Brian T.,  |e author. 
856 4 0 |u http://files.eric.ed.gov/fulltext/ED599373.pdf  |z Full Text (via ERIC) 
907 |a .b118730277  |b 06-23-21  |c 06-23-21 
944 |a MARS - RDA ENRICHED 
998 |a web  |b 06-23-21  |c f  |d m  |e -  |f eng  |g xx  |h 2  |i 0 
956 |a ERIC 
999 f f |i dfbb2729-9f2f-5ffd-88f0-34eba8d64412  |s 67b228b7-4a12-5c37-a101-d567d857d86f