Intrinsic measures on complex manifolds and holomorphic mappings by Donald A. Eisenman.

Saved in:
Bibliographic Details
Online Access: Full Text (via ProQuest)
Main Author: Eisenman, Donald A.
Format: eBook
Language:English
Published: Providence, American Mathematical Society, 1970.
Series:Memoirs of the American Mathematical Society ; no. 96.
Subjects:

MARC

LEADER 00000cam a2200000K 4500
001 b11874865
003 CoU
005 20210625123606.8
006 m o d
007 cr |||||||||||
008 100802s1970 riu ob 000 0 eng d
019 |a 851085904  |a 907195263  |a 1058536447  |a 1097099347  |a 1241948211 
020 |a 9781470400460 
020 |a 1470400464 
020 |z 9780821812969 
020 |z 0821812963 
035 |a (OCoLC)ebqac651869861 
035 |a (OCoLC)651869861  |z (OCoLC)851085904  |z (OCoLC)907195263  |z (OCoLC)1058536447  |z (OCoLC)1097099347  |z (OCoLC)1241948211 
037 |a ebqac3113593 
040 |a OCLCE  |b eng  |e pn  |c OCLCE  |d OCLCQ  |d GZM  |d OCLCO  |d COO  |d OCLCQ  |d UIU  |d OCLCF  |d E7B  |d LLB  |d YDXCP  |d EBLCP  |d OCLCQ  |d STF  |d AU@  |d LEAUB  |d UKAHL  |d OCLCQ  |d QGK 
049 |a GWRE 
050 4 |a QA3  |b .A57 no.96 
100 1 |a Eisenman, Donald A. 
245 1 0 |a Intrinsic measures on complex manifolds and holomorphic mappings  |c by Donald A. Eisenman. 
260 |a Providence,  |b American Mathematical Society,  |c 1970. 
300 |a 1 online resource (80 pages) 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
490 1 |a Memoirs of the American Mathematical Society,  |v no. 96. 
504 |a Includes bibliographical references (pages 79-80) 
505 0 0 |t Introduction  |t Part I. Geometry, distances, and measures on $B̂n$  |t 1. The automorphism group of $B̂n$  |t 2. Invariant distances on $B̂n$  |t 3. Measures and dimension on $B̂n$  |t 4. Hyperbolic measure on $B̂n$  |t 5. Invariant Hausdorff measure on $B̂n$  |t Appendix to Part I  |t Part II. Intrinsic measures on complex manifolds  |t 1. $\kappa $ and $\gamma $ measures  |t 2. Measures defined by integrals: $\Gamma ̂k_n$ and $\mathrm {K}̂k_n$  |t 3. Relations to distances  |t Part III. Applications to the study of holomorphic mappings  |t 1. General results  |t 2. A generalization of Huber's theorem. 
546 |a English. 
588 0 |a Print version record. 
650 0 |a Holomorphic mappings. 
650 0 |a Complex manifolds. 
650 7 |a Complex manifolds.  |2 fast  |0 (OCoLC)fst00871593. 
650 7 |a Holomorphic mappings.  |2 fast  |0 (OCoLC)fst00958954. 
776 0 8 |i Print version:  |a Eisenman, Donald A.  |t Intrinsic measures on complex manifolds and holomorphic mappings.  |d Providence, American Mathematical Society, 1970  |w (OCoLC)1351529. 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 96. 
856 4 0 |u https://ebookcentral.proquest.com/lib/ucb/detail.action?docID=3113593  |z Full Text (via ProQuest) 
907 |a .b118748658  |b 06-28-21  |c 06-28-21 
998 |a web  |b  - -   |c f  |d b   |e z  |f eng  |g riu  |h 0  |i 1 
915 |a K 
956 |a Ebook Central Academic Complete 
956 |b Ebook Central Academic Complete 
999 f f |i a8e60f51-6a74-5b7b-aeb2-ae42001f19a1  |s 348d7733-8126-5bb6-bb3f-fb0211775082 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA3 .A57 no.96  |h Library of Congress classification  |i web  |n 1