Methods in the theory of hereditarily indecomposable Banach spaces / Spiros A. Argyros, Andreas Tolias.
Introduction General results about H.I. spaces Schreier families and repeated averages The space ${X= T [G, (\mathcal{S}_{n_j}, {\tfrac {1}{m_j})}_{j}, D]}$ and the auxiliary space ${T_{ad}}$ The basic inequality Special convex combinations in $X$ Rapidly increasing sequences Defining $D$ to obtain...
Saved in:
Online Access: |
Full Text (via ProQuest) |
---|---|
Main Author: | |
Other Authors: | |
Format: | eBook |
Language: | English |
Published: |
Providence, R.I. :
American Mathematical Society,
©2004.
|
Series: | Memoirs of the American Mathematical Society ;
no. 806. |
Subjects: |
Summary: | Introduction General results about H.I. spaces Schreier families and repeated averages The space ${X= T [G, (\mathcal{S}_{n_j}, {\tfrac {1}{m_j})}_{j}, D]}$ and the auxiliary space ${T_{ad}}$ The basic inequality Special convex combinations in $X$ Rapidly increasing sequences Defining $D$ to obtain a H.I. space ${X_G}$ The predual ${(X_G)_*}$ of ${X_G}$ is also H.I. The structure of the space of operators ${\mathcal L}(X_G)$ Defining $G$ to obtain a nonseparable H.I. space ${X_Ĝ*}$ Complemented embedding of ${\ell̂p}, {1\le p <\infty}$, in the duals of H.I. spaces Compact families in $\mathbb{N}$ The space ${X_{G}=T[G, (\mathcal{S}_{\xi_j}, {\tfrac {1}{m_j})_{j}}, D]}$ for an ${\mathcal{S}_{\xi}}$ bounded set $G$ Quotients of H.I. spaces Bibliography. |
---|---|
Item Description: | "July 2004, Volume 170, Number 806 (third of 4 numbers)." |
Physical Description: | 1 online resource (vi, 114 pages) |
Bibliography: | Includes bibliographical references (pages 113-114) |
ISBN: | 9781470404079 1470404079 |
ISSN: | 1947-6221 ; 0065-9266 |
Source of Description, Etc. Note: | Print version record. |