Degree theory for equivariant maps, the general S1-action / Jorge Ize, Ivar Massabo, Alfonso Vignoli.

In this paper, we consider general [italic]S¹-actions, which may differ on the domain and on the range, with isotropy subspaces with one dimension more on the domain. In the special case of self-maps the [italic]S¹-degree is given by the usual degree of the invariant part, while for one parameter [i...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via ProQuest)
Main Author: Ize, Jorge, 1946-
Other Authors: Massabo, Ivar, 1947-, Vignoli, Alfonso, 1940-
Format: eBook
Language:English
Published: Providence, R.I. : American Mathematical Society, 1992.
Series:Memoirs of the American Mathematical Society ; no. 481.
Subjects:

MARC

LEADER 00000cam a2200000 a 4500
001 b11877180
003 CoU
005 20210625123156.4
006 m o d
007 cr |||||||||||
008 130627s1992 riu ob 000 0 eng d
019 |a 922981474 
020 |a 9781470400583  |q (electronic bk.) 
020 |a 1470400588  |q (electronic bk.) 
020 |z 0821825429  |q (acid-free paper) 
020 |z 9780821825426  |q (acid-free paper) 
035 |a (OCoLC)ebqac851088424 
035 |a (OCoLC)851088424  |z (OCoLC)922981474 
037 |a ebqac3114010 
040 |a GZM  |b eng  |e pn  |c GZM  |d OCLCO  |d COO  |d UIU  |d OCLCF  |d N$T  |d E7B  |d LLB  |d YDXCP  |d OCLCQ  |d EBLCP  |d DEBSZ  |d OCLCQ  |d LEAUB  |d UKAHL  |d OCLCQ  |d INARC  |d OCLCO  |d OCLCQ 
049 |a GWRE 
050 4 |a QA3  |b .A57 no. 481  |a QA612 
100 1 |a Ize, Jorge,  |d 1946- 
245 1 0 |a Degree theory for equivariant maps, the general S1-action /  |c Jorge Ize, Ivar Massabo, Alfonso Vignoli. 
260 |a Providence, R.I. :  |b American Mathematical Society,  |c 1992. 
300 |a 1 online resource (ix, 179 pages) 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
490 1 |a Memoirs of the American Mathematical Society,  |x 1947-6221 ;  |v v. 481. 
500 |a "November 1992, volume 100, number 481 (end of volume)." 
504 |a Includes bibliographical references (pages 177-179) 
505 0 0 |t 1. Preliminaries  |t 2. Extensions of $Ŝ1$-maps  |t 3. Homotopy groups of $Ŝ1$-maps  |t 4. Degree of $Ŝ1$-maps  |t 5. $Ŝ1$-index of an isolated non-stationary orbit and applications  |t 6. Index of an isolated orbit of stationary solutions and applications  |t 7. Virtual periods and orbit index  |t Appendix. Additivity up to one suspension. 
520 |a In this paper, we consider general [italic]S¹-actions, which may differ on the domain and on the range, with isotropy subspaces with one dimension more on the domain. In the special case of self-maps the [italic]S¹-degree is given by the usual degree of the invariant part, while for one parameter [italic]S¹-maps one has an integer for each isotropy subgroup different from [italic]S¹. In particular we recover all the [italic]S¹-degrees introduced in special cases by other authors and we are also able to interpret period doubling results on the basis of our [italic]S¹-degree. The applications concern essentially periodic solutions of ordinary differential equations. 
588 0 |a Print version record. 
650 0 |a Topological degree. 
650 0 |a Mappings (Mathematics) 
650 0 |a Homotopy groups. 
650 0 |a Sphere. 
650 7 |a Homotopy groups.  |2 fast  |0 (OCoLC)fst00959850. 
650 7 |a Mappings (Mathematics)  |2 fast  |0 (OCoLC)fst01008724. 
650 7 |a Sphere.  |2 fast  |0 (OCoLC)fst01129664. 
650 7 |a Topological degree.  |2 fast  |0 (OCoLC)fst01152679. 
700 1 |a Massabo, Ivar,  |d 1947- 
700 1 |a Vignoli, Alfonso,  |d 1940- 
776 0 8 |i Print version:  |a Ize, Jorge, 1946-  |t Degree theory for equivariant maps, the general S1-action /  |x 0065-9266  |z 9780821825426. 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 481. 
856 4 0 |u https://ebookcentral.proquest.com/lib/ucb/detail.action?docID=3114010  |z Full Text (via ProQuest) 
907 |a .b118771802  |b 11-17-21  |c 06-28-21 
998 |a web  |b  - -   |c f  |d b   |e z  |f eng  |g riu  |h 0  |i 1 
915 |a - 
956 |a Ebook Central Academic Complete 
956 |b Ebook Central Academic Complete 
999 f f |i 14451ce4-7d2a-54ec-9861-6f8faf074b63  |s 0b743fe9-411b-5b14-884c-8ead092c463b 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA3 .A57 no. 481 QA612  |h Library of Congress classification  |i web  |n 1