Equivariant E-theory for C*-algebras / Erik Guentner, Nigel Higson, Jody Trout.

Let A and B be C*-algebras which are equipped with continuous actions of a second countable, locally compact group G. We define a notion of equivariant asymptotic morphism, and use it to define equivariant E-theory groups E G(A, B) which generalize the E-theory groups of Connes and Higson. We develo...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via ProQuest)
Main Author: Guentner, Erik, 1965-
Other Authors: Higson, Nigel, 1963-, Trout, Jody
Format: eBook
Language:English
Published: Providence, R.I. : American Mathematical Society, ©2000.
Series:Memoirs of the American Mathematical Society ; no. 703.
Subjects:

MARC

LEADER 00000cam a2200000 a 4500
001 b11877312
003 CoU
005 20211105043719.0
006 m o d
007 cr |||||||||||
008 130627s2000 riu ob 000 0 eng d
019 |a 908039770  |a 922964908 
020 |a 9781470402945 
020 |a 1470402947 
020 |z 9780821821169 
020 |z 0821821164 
035 |a (OCoLC)ebqac851088840 
035 |a (OCoLC)851088840  |z (OCoLC)908039770  |z (OCoLC)922964908 
037 |a ebqac3114533 
040 |a GZM  |b eng  |e pn  |c GZM  |d OCLCO  |d COO  |d UIU  |d OCLCF  |d LLB  |d E7B  |d OCLCQ  |d EBLCP  |d YDXCP  |d OCLCQ  |d LEAUB  |d AU@  |d UKAHL  |d OCLCQ  |d VT2  |d OCLCO  |d OCLCQ 
049 |a GWRE 
050 4 |a QA3  |b .A57 no. 703  |a QA612.33 
100 1 |a Guentner, Erik,  |d 1965- 
245 1 0 |a Equivariant E-theory for C*-algebras /  |c Erik Guentner, Nigel Higson, Jody Trout. 
260 |a Providence, R.I. :  |b American Mathematical Society,  |c ©2000. 
300 |a 1 online resource (viii, 86 pages) 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
490 1 |a Memoirs of the American Mathematical Society,  |x 1947-6221 ;  |v v. 703. 
504 |a Includes bibliographical references (pages 85-86) 
505 0 0 |t Introduction  |t 1. Asymptotic morphisms  |t 2. The homotopy category of asymptotic morphisms  |t 3. Functors on the homotopy category  |t 4. Tensor products and descent  |t 5. $C$*-algebra extensions  |t 6. E-theory  |t 7. Cohomological properties  |t 8. Proper algebras  |t 9. Stabilization  |t 10. Assembly  |t 11. The Green-Julg theorem  |t 12. Induction and compression  |t 13. A generalized Green-Julg theorem  |t 14. Application to the Baum-Connes conjecture  |t 15. Concluding remark on assembly for proper algebras. 
520 8 |a Let A and B be C*-algebras which are equipped with continuous actions of a second countable, locally compact group G. We define a notion of equivariant asymptotic morphism, and use it to define equivariant E-theory groups E G(A, B) which generalize the E-theory groups of Connes and Higson. We develop the basic properties of equivariant E-theory, including a composition product and six-term exact sequences in both variables, and apply our theory to the problem of calculating K-theory for group C*-algebras. Our main theorem gives a simple criterion for the assembly map of Baum and Connes to be an isomorphism. The result plays an important role in recent work of Higson and Kasparov on the Baum-Connes conjecture for groups which act isometrically and metrically properly on Hilbert space. 
588 0 |a Print version record. 
650 0 |a KK-theory. 
650 0 |a C*-algebras. 
650 7 |a C*-algebras.  |2 fast  |0 (OCoLC)fst00843285. 
650 7 |a KK-theory.  |2 fast  |0 (OCoLC)fst00985553. 
700 1 |a Higson, Nigel,  |d 1963- 
700 1 |a Trout, Jody. 
776 0 8 |i Print version:  |a Guentner, Erik, 1965-  |t Equivariant E-theory for C*-algebras /  |x 0065-9266  |z 9780821821169. 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 703. 
856 4 0 |u https://ebookcentral.proquest.com/lib/ucb/detail.action?docID=3114533  |z Full Text (via ProQuest) 
907 |a .b118773124  |b 11-30-21  |c 06-28-21 
998 |a web  |b  - -   |c f  |d b   |e z  |f eng  |g riu  |h 0  |i 2 
915 |a - 
956 |a Ebook Central Academic Complete 
956 |b Ebook Central Academic Complete 
999 f f |i fde02ca5-0c28-5b63-ac99-0c537bf5a034  |s 00e6b909-e185-5420-a1d9-98c47101a02e 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA3 .A57 no. 703 QA612.33  |h Library of Congress classification  |i web  |n 1