Basic global relative invariants for homogeneous linear differential equations / Roger Chalkley.

Saved in:
Bibliographic Details
Online Access: Full Text (via ProQuest)
Main Author: Chalkley, Roger, 1931-
Format: eBook
Language:English
Published: Providence, R.I. : American Mathematical Society, 2002.
Series:Memoirs of the American Mathematical Society ; no. 744.
Subjects:

MARC

LEADER 00000cam a2200000 a 4500
001 b11877330
003 CoU
005 20211029040136.0
006 m o d
007 cr |||||||||||
008 130627s2002 riua ob 001 0 eng d
019 |a 908039950  |a 922964966  |a 987781671  |a 1086467679 
020 |a 9781470403379 
020 |a 1470403374 
020 |z 9780821827819 
020 |z 0821827812 
035 |a (OCoLC)ebqac851088868 
035 |a (OCoLC)851088868  |z (OCoLC)908039950  |z (OCoLC)922964966  |z (OCoLC)987781671  |z (OCoLC)1086467679 
037 |a ebqac3114545 
040 |a GZM  |b eng  |e pn  |c GZM  |d OCLCO  |d COO  |d UIU  |d OCLCF  |d LLB  |d E7B  |d OCLCQ  |d EBLCP  |d YDXCP  |d OCLCQ  |d AU@  |d UKAHL  |d OCLCQ  |d LEAUB  |d OCLCQ  |d VT2  |d OCLCO  |d OCLCQ 
049 |a GWRE 
050 4 |a QA3  |b .A57 no. 744  |a QA372 
100 1 |a Chalkley, Roger,  |d 1931- 
245 1 0 |a Basic global relative invariants for homogeneous linear differential equations /  |c Roger Chalkley. 
260 |a Providence, R.I. :  |b American Mathematical Society,  |c 2002. 
300 |a 1 online resource (xi, 204 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
490 1 |a Memoirs of the American Mathematical Society,  |x 1947-6221 ;  |v v. 744. 
500 |a "Volume 156, number 744 (end of volume)." 
504 |a Includes bibliographical references (pages 197-199) and index. 
505 0 0 |t 1. Introduction  |t 2. Some problems of historical importance  |t 3. Illustrations for some results in Chapters 1 and 2  |t 4. $L_n$ and $I_{n, i}$ as semi-invariants of the first kind  |t 5. $V_n$ and $J_{n, i}$ as semi-invariants of the second kind  |t 6. The coefficients of transformed equations  |t 7. Formulas that involve $L_n(z)$ or $I_{n, n}(z)$  |t 8. Formulas that involve $V_n(z)$ or $J_{n, n}(z)$  |t 9. Verification of $I_{n, n} \equiv J_{n, n}$ and various observations  |t 10. The local constructions of earlier research  |t 11. Relations for $G_i$, $H_i$, and $L_i$ that yield equivalent formulas for basic relative invariants  |t 12. Real-valued functions of a real variable  |t 13. A constructive method for imposing conditions on Laguerre-Forsyth canonical forms  |t 14. Additional formulas for $K_{i, j}$, $U_{i, j}$, $A_{i, j}$, $D_{i, j}$ ...  |t 15. Three canonical forms are now available  |t 16. Interesting problems that require further study. 
588 0 |a Print version record. 
650 0 |a Differential equations, Linear. 
650 0 |a Invariants. 
650 7 |a Differential equations, Linear.  |2 fast  |0 (OCoLC)fst00893468. 
650 7 |a Invariants.  |2 fast  |0 (OCoLC)fst00977982. 
776 0 8 |i Print version:  |a Chalkley, Roger, 1931-  |t Basic global relative invariants for homogeneous linear differential equations /  |x 0065-9266  |z 9780821827819. 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 744. 
856 4 0 |u https://ebookcentral.proquest.com/lib/ucb/detail.action?docID=3114545  |z Full Text (via ProQuest) 
907 |a .b118773306  |b 11-30-21  |c 06-28-21 
998 |a web  |b  - -   |c f  |d b   |e z  |f eng  |g riu  |h 0  |i 2 
915 |a - 
956 |a Ebook Central Academic Complete 
956 |b Ebook Central Academic Complete 
999 f f |i 48a51aee-0df7-5a11-a8bf-496a6f383439  |s d5ba914a-095c-5a3b-a9d8-9971141435c0 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA3 .A57 no. 744 QA372  |h Library of Congress classification  |i web  |n 1