Variations on a theorem of Tate / Stefan Patrikis.

"Let F be a number field. These notes explore Galois-theoretic, automorphic, and motivic analogues and refinements of Tate's basic result that continuous projective representations \mathrm{Gal}(\overline{F}/F) \to \mathrm{PGL}_n(\mathbb{C}) lift to \mathrm{GL}_n(\mathbb{C}). The author tak...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via ProQuest)
Main Author: Patrikis, Stefan, 1984- (Author)
Format: eBook
Language:English
Published: Providence, RI : American Mathematical Society, 2019.
Series:Memoirs of the American Mathematical Society ; no. 1238.
Subjects:

MARC

LEADER 00000cam a2200000 i 4500
001 b11885370
003 CoU
005 20210625123417.5
006 m o d
007 cr |||||||||||
008 190410t20192019riu ob 001 0deng d
020 |a 9781470450670 
020 |a 1470450674 
020 |z 9781470435400  |q (alk. paper) 
020 |z 1470435403  |q (alk. paper) 
035 |a (OCoLC)ebqac1096296254 
035 |a (OCoLC)1096296254 
037 |a ebqac5770284 
040 |a UIU  |b eng  |e rda  |e pn  |c UIU  |d OCLCO  |d EBLCP  |d OCLCF  |d COD  |d OCLCQ  |d OCLCO  |d OCLCA  |d UAB  |d OCL  |d OCLCQ  |d UKAHL  |d OCLCQ  |d OCLCO 
049 |a GWRE 
050 4 |a QA247  |b .P38 2019 
100 1 |a Patrikis, Stefan,  |d 1984-  |e author. 
245 1 0 |a Variations on a theorem of Tate /  |c Stefan Patrikis. 
264 1 |a Providence, RI :  |b American Mathematical Society,  |c 2019. 
264 4 |c ©2019. 
300 |a 1 online resource (vii, 156 pages) 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
490 1 |a Memoirs of the American Mathematical Society,  |x 0065-9266 ;  |v volume 258, number 1238. 
500 |a "March 2019 - Volume 258 - Number 1238 (second of 7 numbers)." 
500 |a "Keywords: Galois representations, algebraic automorphic representations, motives for motivated cycles, monodromy, Kuga-Satake construction, hyperkähler varieties"--Online information. 
500 |a Title same as author's dissertation, Princeton University, 2012. 
504 |a Includes bibliographical references (pages 147-152) and index. 
505 0 |a Cover; Title page; Chapter 1. Introduction; 1.1. Introduction; 1.2. What is assumed of the reader: Background references; 1.3. Acknowledgments; 1.4. Notation; Chapter 2. Foundations & examples; 2.1. Review of lifting results; 2.2. ℓ-adic Hodge theory preliminaries; 2.3. \mr{ }₁; 2.4. Coefficients: Generalizing Weil's CM descent of type Hecke characters; 2.5. W-algebraic representations; 2.6. Further examples: The Hilbert modular case and \mr{ }₂×\mr{ }₂\xrightarrow{⊠}\mr{ }₄; 2.7. Galois lifting: Hilbert modular case; 2.8. Spin examples. 
505 8 |a Chapter 3. Galois and automorphic lifting3.1. Lifting -algebraic representations; 3.2. Galois lifting: The general case; 3.3. Applications: Comparing the automorphic and Galois formalisms; 3.4. Monodromy of abstract Galois representations; Chapter 4. Motivic lifting; 4.1. Motivated cycles: Generalities; 4.2. Motivic lifting: The hyperkähler case; 4.3. Towards a generalized Kuga-Satake theory; Bibliography; Index of symbols; Index of terms and concepts; Back Cover. 
520 |a "Let F be a number field. These notes explore Galois-theoretic, automorphic, and motivic analogues and refinements of Tate's basic result that continuous projective representations \mathrm{Gal}(\overline{F}/F) \to \mathrm{PGL}_n(\mathbb{C}) lift to \mathrm{GL}_n(\mathbb{C}). The author takes special interest in the interaction of this result with algebraicity (for automorphic representations) and geometricity (in the sense of Fontaine-Mazur). On the motivic side, the author studies refinements and generalizations of the classical Kuga-Satake construction. Some auxiliary results touch on: possible infinity-types of algebraic automorphic representations; comparison of the automorphic and Galois "Tannakian formalisms"; monodromy (independence-of-l) questions for abstract Galois representations."--Page v. 
588 0 |a Print version record. 
600 1 0 |a Tate, John Torrence,  |d 1925-2019. 
650 0 |a Algebraic number theory. 
650 0 |a Algebraic topology. 
650 0 |a Galois cohomology. 
650 0 |a Galois theory. 
600 1 7 |a Tate, John Torrence,  |d 1925-2019  |2 fast  |0 (OCoLC)fst01451401. 
650 7 |a Algebraic number theory.  |2 fast  |0 (OCoLC)fst00804937. 
650 7 |a Algebraic topology.  |2 fast  |0 (OCoLC)fst00804941. 
650 7 |a Galois cohomology.  |2 fast  |0 (OCoLC)fst00937323. 
650 7 |a Galois theory.  |2 fast  |0 (OCoLC)fst00937326. 
776 0 8 |i Print version:  |a Patrikis, Stefan, 1984-  |t Variations on a theorem of Tate.  |d Providence, RI : American Mathematical Society, [2019]  |z 9781470435400  |w (DLC) 2019013161  |w (OCoLC)1079402472. 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1238. 
856 4 0 |u https://ebookcentral.proquest.com/lib/ucb/detail.action?docID=5770284  |z Full Text (via ProQuest) 
907 |a .b118853703  |b 06-28-21  |c 06-28-21 
998 |a web  |b  - -   |c f  |d b   |e z  |f eng  |g riu  |h 0  |i 1 
915 |a - 
956 |a Ebook Central Academic Complete 
956 |b Ebook Central Academic Complete 
999 f f |i ba3f3b64-9245-518f-bdd8-088cb5604639  |s 3120964a-6a97-5245-9f69-e9a4287b508b 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA247 .P38 2019  |h Library of Congress classification  |i web  |n 1