Variations on a theorem of Tate / Stefan Patrikis.
"Let F be a number field. These notes explore Galois-theoretic, automorphic, and motivic analogues and refinements of Tate's basic result that continuous projective representations \mathrm{Gal}(\overline{F}/F) \to \mathrm{PGL}_n(\mathbb{C}) lift to \mathrm{GL}_n(\mathbb{C}). The author tak...
Saved in:
Online Access: |
Full Text (via ProQuest) |
---|---|
Main Author: | |
Format: | eBook |
Language: | English |
Published: |
Providence, RI :
American Mathematical Society,
2019.
|
Series: | Memoirs of the American Mathematical Society ;
no. 1238. |
Subjects: |
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | b11885370 | ||
003 | CoU | ||
005 | 20210625123417.5 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 190410t20192019riu ob 001 0deng d | ||
020 | |a 9781470450670 | ||
020 | |a 1470450674 | ||
020 | |z 9781470435400 |q (alk. paper) | ||
020 | |z 1470435403 |q (alk. paper) | ||
035 | |a (OCoLC)ebqac1096296254 | ||
035 | |a (OCoLC)1096296254 | ||
037 | |a ebqac5770284 | ||
040 | |a UIU |b eng |e rda |e pn |c UIU |d OCLCO |d EBLCP |d OCLCF |d COD |d OCLCQ |d OCLCO |d OCLCA |d UAB |d OCL |d OCLCQ |d UKAHL |d OCLCQ |d OCLCO | ||
049 | |a GWRE | ||
050 | 4 | |a QA247 |b .P38 2019 | |
100 | 1 | |a Patrikis, Stefan, |d 1984- |e author. | |
245 | 1 | 0 | |a Variations on a theorem of Tate / |c Stefan Patrikis. |
264 | 1 | |a Providence, RI : |b American Mathematical Society, |c 2019. | |
264 | 4 | |c ©2019. | |
300 | |a 1 online resource (vii, 156 pages) | ||
336 | |a text |b txt |2 rdacontent. | ||
337 | |a computer |b c |2 rdamedia. | ||
338 | |a online resource |b cr |2 rdacarrier. | ||
490 | 1 | |a Memoirs of the American Mathematical Society, |x 0065-9266 ; |v volume 258, number 1238. | |
500 | |a "March 2019 - Volume 258 - Number 1238 (second of 7 numbers)." | ||
500 | |a "Keywords: Galois representations, algebraic automorphic representations, motives for motivated cycles, monodromy, Kuga-Satake construction, hyperkähler varieties"--Online information. | ||
500 | |a Title same as author's dissertation, Princeton University, 2012. | ||
504 | |a Includes bibliographical references (pages 147-152) and index. | ||
505 | 0 | |a Cover; Title page; Chapter 1. Introduction; 1.1. Introduction; 1.2. What is assumed of the reader: Background references; 1.3. Acknowledgments; 1.4. Notation; Chapter 2. Foundations & examples; 2.1. Review of lifting results; 2.2. ℓ-adic Hodge theory preliminaries; 2.3. \mr{ }₁; 2.4. Coefficients: Generalizing Weil's CM descent of type Hecke characters; 2.5. W-algebraic representations; 2.6. Further examples: The Hilbert modular case and \mr{ }₂×\mr{ }₂\xrightarrow{⊠}\mr{ }₄; 2.7. Galois lifting: Hilbert modular case; 2.8. Spin examples. | |
505 | 8 | |a Chapter 3. Galois and automorphic lifting3.1. Lifting -algebraic representations; 3.2. Galois lifting: The general case; 3.3. Applications: Comparing the automorphic and Galois formalisms; 3.4. Monodromy of abstract Galois representations; Chapter 4. Motivic lifting; 4.1. Motivated cycles: Generalities; 4.2. Motivic lifting: The hyperkähler case; 4.3. Towards a generalized Kuga-Satake theory; Bibliography; Index of symbols; Index of terms and concepts; Back Cover. | |
520 | |a "Let F be a number field. These notes explore Galois-theoretic, automorphic, and motivic analogues and refinements of Tate's basic result that continuous projective representations \mathrm{Gal}(\overline{F}/F) \to \mathrm{PGL}_n(\mathbb{C}) lift to \mathrm{GL}_n(\mathbb{C}). The author takes special interest in the interaction of this result with algebraicity (for automorphic representations) and geometricity (in the sense of Fontaine-Mazur). On the motivic side, the author studies refinements and generalizations of the classical Kuga-Satake construction. Some auxiliary results touch on: possible infinity-types of algebraic automorphic representations; comparison of the automorphic and Galois "Tannakian formalisms"; monodromy (independence-of-l) questions for abstract Galois representations."--Page v. | ||
588 | 0 | |a Print version record. | |
600 | 1 | 0 | |a Tate, John Torrence, |d 1925-2019. |
650 | 0 | |a Algebraic number theory. | |
650 | 0 | |a Algebraic topology. | |
650 | 0 | |a Galois cohomology. | |
650 | 0 | |a Galois theory. | |
600 | 1 | 7 | |a Tate, John Torrence, |d 1925-2019 |2 fast |0 (OCoLC)fst01451401. |
650 | 7 | |a Algebraic number theory. |2 fast |0 (OCoLC)fst00804937. | |
650 | 7 | |a Algebraic topology. |2 fast |0 (OCoLC)fst00804941. | |
650 | 7 | |a Galois cohomology. |2 fast |0 (OCoLC)fst00937323. | |
650 | 7 | |a Galois theory. |2 fast |0 (OCoLC)fst00937326. | |
776 | 0 | 8 | |i Print version: |a Patrikis, Stefan, 1984- |t Variations on a theorem of Tate. |d Providence, RI : American Mathematical Society, [2019] |z 9781470435400 |w (DLC) 2019013161 |w (OCoLC)1079402472. |
830 | 0 | |a Memoirs of the American Mathematical Society ; |v no. 1238. | |
856 | 4 | 0 | |u https://ebookcentral.proquest.com/lib/ucb/detail.action?docID=5770284 |z Full Text (via ProQuest) |
907 | |a .b118853703 |b 06-28-21 |c 06-28-21 | ||
998 | |a web |b - - |c f |d b |e z |f eng |g riu |h 0 |i 1 | ||
915 | |a - | ||
956 | |a Ebook Central Academic Complete | ||
956 | |b Ebook Central Academic Complete | ||
999 | f | f | |i ba3f3b64-9245-518f-bdd8-088cb5604639 |s 3120964a-6a97-5245-9f69-e9a4287b508b |
952 | f | f | |p Can circulate |a University of Colorado Boulder |b Online |c Online |d Online |e QA247 .P38 2019 |h Library of Congress classification |i web |n 1 |