Introduction to linear algebra / Rita Fioresi, Marta Morigi.

Linear algebra provides the essential mathematical tools to tackle all the problems in Science. Introduction to Linear Algebra is primarily aimed at students in applied fields (e.g. Computer Science and Engineering), providing them with a concrete, rigorous approach to face and solve various types o...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Taylor & Francis)
Main Authors: Fioresi, Rita, 1966- (Author), Morigi, Marta (Author)
Format: Electronic eBook
Language:English
Published: Boca Raton : Chapman & Hall/CRC, 2021.
Edition:1st.
Subjects:

MARC

LEADER 00000cam a22000001i 4500
001 b11973716
006 m o d
007 cr |||||||||||
008 210709s2021 flua ob 001 0 eng d
005 20241118152258.0
015 |a GBC1B1621  |2 bnb 
016 7 |a 020258757  |2 Uk 
020 |a 9781000427905  |q (ePub ebook) 
020 |a 1000427900 
020 |a 9781000427875  |q (PDF ebook) 
020 |a 1000427870 
020 |a 9781003119609  |q (ebook) 
020 |a 1003119603 
020 |z 9780367626549 (hbk.) 
024 7 |a 10.1201/9781003119609  |2 doi 
029 0 |a UKMGB  |b 020258757 
029 1 |a AU@  |b 000070045934 
035 |a (OCoLC)tfe1263818404 
035 |a (OCoLC)1263818404 
037 |a tfe9781003119609 
040 |a UKMGB  |b eng  |e rda  |e pn  |c UKMGB  |d OCLCO  |d OCLCF  |d TYFRS  |d UKAHL  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d NOC 
049 |a GWRE 
050 4 |a QA184.2 
100 1 |a Fioresi, Rita,  |d 1966-  |e author.  |0 http://id.loc.gov/authorities/names/no98070726  |1 https://id.oclc.org/worldcat/entity/E39PBJvcYTHbt7xJT9qQfbmcfq  |1 http://isni.org/isni/0000000109678502 
245 1 0 |a Introduction to linear algebra /  |c Rita Fioresi, Marta Morigi. 
250 |a 1st. 
264 1 |a Boca Raton :  |b Chapman & Hall/CRC,  |c 2021. 
300 |a 1 online resource :  |b illustrations (black and white) 
336 |a text  |b txt  |2 rdacontent 
336 |a still image  |b sti  |2 rdacontent 
337 |a unmediated  |b n  |2 rdamedia 
338 |a online resource  |b nc  |2 rdacarrier 
545 0 |a Rita Fioresi and Marta Morigi are professors at the University of Bologna and teach linearalgebra courses to students of all majors. Their research publications are centered into algebra with some applications (R. Fioresi Lie theory & machine learning, M. Morigi Group theory). 
504 |a Includes bibliographical references and index. 
505 0 |a 1. Introduction to Linear Systems. 1.1. Linear systems: First Examples. 1.2. Matrices. 1.3. Matrices and Linear Systems. 1.4. The Gaussian Algorithm. 1.5. Exercises with Solutions. 1.6. Suggested Exercises. 2. Vector Spaces. 2.1. Introduction: The Set of Real Numbers. 2.2. The Vector Space R<I>n </I>and the Vector Space of Matrices. 2.3. Vector Spaces. 2.4. SubSpaces. 2.5. Exercises with Solutions. 2.6. Suggested Exercises. 3. Linear Combination and Linear Independence. 3.1. Linear Combinations and Generators. 3.2. Linear Independence. 3.3. Exercises with Solutions. 3.4. Suggested Exercises. 4. Basis and Dimension. 4.1. Basis: Definition and Examples. 4.2. The Concept of Dimension. 4.3. Gaussian Algorithm. 4.4. Exercises with Solutions. 4.5. Suggested Exercises. 4.6. Appendix: The Completion Theorem. 5. Linear Transformations. 5.1. Linear Transformations: Definition. 5.2. Linear Maps and Matrices. 5.3. the Composition of Linear transformations. 5.4. Kernel and Image. 5.5. The Rank Nullity Theorem. 5.6. Isomorphism of Vector Spaces. 5.7. Calculation of Kernel and Image. 5.8. Exercises with Solutions. 5.9. Suggested Exercises. 6. Linear Systems. 6.1. Preimage. 6.2. Linear Systems. 6.3. Exercises with Solutions. 6.4. Suggested Exercises. 7. Determinant and Inverse. 7.1. Definition of Determinant. 7.2. Calculating the Determinant: Cases 2 -- 2 and 3 -- 3. 7.3. Calculating the Determinant with a Recursive Method. 7.4. Inverse of a Matrix. 7.5. Calculation of the Inverse with the Gaussian Algorithm. 7.6. The Linear Maps from R<I>n </I>to R<I>n. 7.7. Exercises with Solutions. 7.8. Suggested Exercises. 7.9. Appendix 8. Change of Basis 8.1. Linear Transformations and Matrices. 8.2. The Identity Map. 8.3. Change of Basis for Linear Transformations. 8.4. Exercises with Solutions. 8.5. Suggested Exercises. 9. Eigenvalues and Eigenvectors 9.1. Diagonalizability. 9.2. Eigenvalues and Eigenvectors. 9.3. Exercises with Solutions. 9.4. Suggested Exercises. 10. Scalar Products. 10.1. Bilinear Forms. 10.2. Bilinear Forms and Matrices. 10.3. Basis Change. 10.4. Scalar Products. 10.5. Orthogonal Subspaces. 10.6. Gram-Schmidt Algorithm. 10.7. Exercises with Solutions. 10.8. Suggested Exercises. 11. Spectral Theorem. 11.1. Orthogonal Linear Transformations. 11.2. Orthogonal Matrices. 11.3. Symmetric Linear Transformations. 11.4. The Spectral Theorem. 11.5. Exercises with Solutions. 11.6. Suggested Exercises. 11.7. Appendix: The Complex Case. 12. Applications of Spectral Theorem and Quadratic Forms. 12.1. Diagonalization of Scalar Products. 12.2. Quadratic Forms. 12.3. Quadratic Forms and in the Plane. 12.4. Exercises with Solutions. 12.5. Suggested Exercises. 13. Lines and Planes. 13.1. Points and Vectors in R3. 13.2. Scalar Product and Vector Product. 13.3. Lines in R3. 13.4. Planes in R3. 13.5. Exercises with Solutions. 13.6. Suggested Exercises. 14. Introduction to Modular Arithmetic 14.1. The Principle of Induction. 14.2. The Division Algorithm and Euclid's Algorithm. 14.3. Congruence Classes. 14.4. Congruences. 14.5. Exercises with Solutions. 14.6. Suggested Exercises. 14.7 Appendix: Elementary Notions of Set Theory. Appendix A. Complex Numbers. A.1. Complex Numbers. A.2. Polar Representation. Appendix B. Solutions of Some Suggested Exercises. Bibliography. Index. 
588 |a Description based on CIP data; resource not viewed. 
520 |a Linear algebra provides the essential mathematical tools to tackle all the problems in Science. Introduction to Linear Algebra is primarily aimed at students in applied fields (e.g. Computer Science and Engineering), providing them with a concrete, rigorous approach to face and solve various types of problems for the applications of their interest. This book offers a straightforward introduction to linear algebra that requires a minimal mathematical background to read and engage with. Features Presented in a brief, informative and engaging style Suitable for a wide broad range of undergraduates Contains many worked examples and exercises 
650 0 |a Algebras, Linear.  |0 http://id.loc.gov/authorities/subjects/sh85003441 
650 7 |a Algebras, Linear.  |2 fast 
700 1 |a Morigi, Marta,  |e author.  |0 http://id.loc.gov/authorities/names/n2021028091 
758 |i has work:  |a Introduction to linear algebra (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFwP7v788p8XgmXpjXr44q  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |z 9780367626549 
856 4 0 |u https://colorado.idm.oclc.org/login?url=https://www.taylorfrancis.com/books/9781003119609  |z Full Text (via Taylor & Francis) 
915 |a 1 
944 |a MARS - RDA ENRICHED 
956 |a Taylor & Francis Ebooks 
956 |b Taylor & Francis All eBooks 
956 |a Quesnalia testing - EUI 
994 |a 92  |b COD 
998 |b Added to collection informaworld.tandfebooks 
999 f f |i 4cc2ecc5-fd9a-5bde-bf8f-bae00c126ce6  |s f5559e1f-e0ed-5e39-af9c-c515ec3cd67c 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA184.2  |h Library of Congress classification  |i web  |n 1