Plastics engineering / Roy J. Crawford, Peter J. Martin.

Saved in:
Bibliographic Details
Online Access: Full Text (via Knovel)
Main Authors: Crawford, R. J. (Roy James), 1949- (Author), Martin, P. J. (Patrick J.), 1926- (Author)
Format: eBook
Language:English
Published: Kidlington, Oxford : Butterworth-Heinemann, an imprint of Elsevier, [2020]
Edition:Fourth edition.
Subjects:
Table of Contents:
  • Front Cover
  • Plastics Engineering
  • Plastics Engineering
  • Copyright
  • Contents
  • Preface to the fourth edition
  • Preface to the third edition
  • Preface to the second edition
  • Preface to the first edition
  • 1
  • General properties of plastics
  • 1.1 Introduction
  • 1.2 Polymeric materials
  • (a) Thermoplastic materials
  • (b) Thermosetting plastics
  • 1.3 Plastics available to the designer
  • 1.3.1 Commodity thermoplastics
  • 1.3.2 Engineering thermoplastics
  • 1.3.3 High performance plastics
  • 1.3.4 Thermosets
  • 1.3.5 Composites
  • 1.3.6 Structural foam
  • 1.3.7 Elastomers.
  • 1.3.8 Polymer alloys
  • 1.3.9 Liquid crystal polymers
  • 1.3.10 Shape memory polymers
  • 1.3.11 Bio-degradable plastics
  • Typical Characteristics of Some Important Plastics
  • (a) Semi-crystalline plastics
  • (b) Amorphous plastics
  • (c) Thermoplastic rubbers (TPRs or TPEs)
  • (d) Thermosetting plastics
  • 1.4 Selection of plastics
  • 1.4.1 Mechanical properties
  • Material selection for strength
  • Material selection for stiffness
  • 1.4.2 Degradation
  • Physical or chemical attack
  • 1.4.3 Wear resistance and frictional properties
  • 1.4.4 Thermal properties
  • 1.4.5 Special properties.
  • 1.4.6 Processing
  • 1.4.7 Recyclability
  • 1.4.8 Costs
  • Selection for strength at minimum cost
  • Selection for stiffness at minimum cost
  • Bibliography
  • 2
  • Mechanical behaviour of plastics
  • 2.1 Introduction
  • 2.2 Viscoelastic behaviour of plastics
  • 2.3 Short-term testing of plastics
  • 2.4 Long-term testing of plastics
  • 2.5 Design methods for plastics using deformation data
  • 2.5.1 Isochronous and isometric graphs
  • 2.5.2 Pseudo-elastic design method for plastics
  • 2.6 Thermal stresses and strains
  • 2.7 Multi-layer mouldings
  • 2.8 Design of snap fits.
  • 2.9 Design of ribbed sections
  • 2.10 Stiffening mechanisms in other moulding situations
  • 2.11 Mathematical models of viscoelastic behaviour
  • 2.11.1 Maxwell model
  • Stress-Strain Relations
  • Equilibrium Equation
  • Geometry of Deformation Equation
  • (i) Creep
  • (ii) Relaxation
  • (iii) Recovery
  • 2.11.2 Kelvin or Voigt model
  • Stress-Strain Relations
  • Equilibrium Equation
  • Geometry of Deformation Equation
  • (i) Creep
  • (ii) Relaxation
  • (iii) Recovery
  • 2.11.3 More complex models
  • 2.11.4 Standard linear solid
  • Stress-Strain Relations
  • Equilibrium Equation.
  • Geometry of Deformation Equation
  • (i) Creep
  • (ii) Relaxation
  • (iii) Recovery
  • 2.12 Intermittent loading
  • 2.12.1 Superposition principle
  • (a) Step Changes of Stress
  • (b) Continuous Changes of Stress
  • 2.12.2 Empirical approach
  • 2.13 Dynamic loading of plastics
  • 2.14 Time-temperature superposition
  • 2.15 Fracture behaviour of unreinforced plastics
  • 2.16 The concept of stress concentration
  • 2.17 Energy approach to fracture
  • 2.18 Stress intensity factor approach to fracture
  • 2.19 General fracture behaviour of plastics
  • 2.20 Creep failure of plastics.