Fiber optic communications [electronic resource] / Gerd Keiser.

This book highlights the fundamental principles of optical fiber technology required for understanding modern high-capacity lightwave telecom networks. Such networks have become an indispensable part of society with applications ranging from simple web browsing to critical healthcare diagnosis and c...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Springer)
Main Author: Keiser, Gerd
Format: Electronic eBook
Language:English
Published: Singapore : Springer, 2021.
Subjects:
Table of Contents:
  • Intro
  • Preface
  • Use of This Book
  • Acknowledgements
  • Contents
  • About the Author
  • 1 Perspectives on Lightwave Communications
  • 1.1 Reasons for Fiber Optic Communications
  • 1.1.1 The Road to Optical Networks
  • 1.1.2 Benefits of Using Optical Fibers
  • 1.2 Optical Wavelength Bands
  • 1.2.1 Electromagnetic Energy Spectrum
  • 1.2.2 Optical Windows and Spectral Bands
  • 1.3 Decibel Notation
  • 1.4 Digital Multiplexing Techniques
  • 1.4.1 Basic Telecom Signal Multiplexing
  • 1.4.2 Multiplexing Hierarchy in SONET/SDH
  • 1.4.3 Optical Transport Network (OTN)
  • 1.5 Multiplexing of Wavelength Channels
  • 1.5.1 Basis of WDM
  • 1.5.2 Polarization Division Multiplexing
  • 1.5.3 Optical Fibers with Multiple Cores
  • 1.6 Basic Elements of Optical Fiber Systems
  • 1.7 Evolution of Fiber Optic Networks
  • 1.8 Standards for Fiber Optic Communications
  • 1.9 Summary
  • References
  • 2 Optical Fiber Structures and Light Guiding Principles
  • 2.1 The Nature of Light
  • 2.1.1 Polarization
  • 2.1.2 Linear Polarization
  • 2.1.3 Elliptical Polarization and Circular Polarization
  • 2.1.4 Quantum Aspects of Light
  • 2.2 Basic Laws and Definitions of Optics.
  • 2.2.1 Concept of Refractive Index
  • 2.2.2 Basis of Reflection and Refraction
  • 2.2.3 Polarization Characteristics of Light
  • 2.2.4 Polarization-Sensitive Devices
  • 2.3 Optical Fiber Configurations and Modes
  • 2.3.1 Conventional Fiber Types
  • 2.3.2 Concepts of Rays and Modes
  • 2.3.3 Structure of Step-Index Fibers
  • 2.3.4 Ray Optics Representation
  • 2.3.5 Lightwaves in a Dielectric Slab Waveguide
  • 2.4 Modes in Circular Waveguides
  • 2.4.1 Basic Modal Concepts
  • 2.4.2 Cutoff Wavelength and V Number
  • 2.4.3 Optical Power in Step-Index Fibers
  • 2.4.4 Linearly Polarized Modes.
  • 2.5 Single-Mode Fibers
  • 2.5.1 SMF Construction
  • 2.5.2 Definition of Mode-Field Diameter
  • 2.5.3 Origin of Birefringence
  • 2.5.4 Effective Refractive Index
  • 2.6 Graded-Index (GI) Fibers
  • 2.6.1 Core Structure of GI Fibers
  • 2.6.2 GI Fiber Numerical Aperture
  • 2.6.3 Cutoff Condition in GI Fibers
  • 2.7 Optical Fiber Materials
  • 2.7.1 Glass Optical Fibers
  • 2.7.2 Standard Fiber Fabrication
  • 2.7.3 Active Glass Optical Fibers
  • 2.7.4 Plastic Optical Fibers
  • 2.8 Photonic Crystal Fiber Concepts
  • 2.8.1 Index-Guiding PCF
  • 2.8.2 Photonic Bandgap Fiber
  • 2.9 Optical Fiber Cables.
  • 2.9.1 Fiber Optic Cable Structures
  • 2.9.2 Designs of Indoor Optical Cables
  • 2.9.3 Designs of Outdoor Optical Cables
  • 2.10 Summary
  • Appendix: The Fresnel Equations
  • References
  • 3 Optical Signal Attenuation and Dispersion
  • 3.1 Fiber Attenuation
  • 3.1.1 Units for Fiber Attenuation
  • 3.1.2 Absorption of Optical Power
  • 3.1.3 Scattering Losses in Optical Fibers
  • 3.1.4 Fiber Bending Losses
  • 3.1.5 Core and Cladding Propagation Losses
  • 3.2 Optical Signal Dispersion Effects
  • 3.2.1 Origins of Signal Dispersion
  • 3.2.2 Modal Delay Effects
  • 3.2.3 Factors Contributing to Dispersion.