AI for healthcare with Keras and Tensorflow 2.0 : design, develop, and deploy machine learning models using healthcare data / Anshik.

Learn how AI impacts the healthcare ecosystem through real-life case studies with TensorFlow 2.0 and other machine learning (ML) libraries. This book begins by explaining the dynamics of the healthcare market, including the role of stakeholders such as healthcare professionals, patients, and payers....

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via O'Reilly/Safari)
Main Author: Anshik (Author)
Format: eBook
Language:English
Published: [Berkeley] : Apress, [2021]
Subjects:

MARC

LEADER 00000cam a2200000 i 4500
001 b12099222
006 m o d
007 cr |||||||||||
008 210702s2021 caua ob 001 0 eng d
005 20240829150252.9
019 |a 1260347533  |a 1266810114 
020 |a 9781484270868  |q (electronic bk.) 
020 |a 148427086X  |q (electronic bk.) 
020 |z 9781484270851 
020 |z 1484270851 
024 7 |a 10.1007/978-1-4842-7086-8  |2 doi 
029 1 |a AU@  |b 000069461224 
035 |a (OCoLC)safo1258659541 
035 |a (OCoLC)1258659541  |z (OCoLC)1260347533  |z (OCoLC)1266810114 
037 |a safo9781484270868 
040 |a YDX  |b eng  |e rda  |e pn  |c YDX  |d GW5XE  |d EBLCP  |d OCLCO  |d N$T  |d OCLCF  |d DCT  |d UKAHL  |d OCLCQ  |d OCLCO  |d K6U  |d OCLCQ  |d OCLCO  |d OCLCA 
049 |a GWRE 
050 4 |a R859.7.A78  |b A47 2021 
100 0 |a Anshik,  |e author. 
245 1 0 |a AI for healthcare with Keras and Tensorflow 2.0 :  |b design, develop, and deploy machine learning models using healthcare data /  |c Anshik. 
264 1 |a [Berkeley] :  |b Apress,  |c [2021] 
264 4 |c ©2021 
300 |a 1 online resource :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a volume  |b nc  |2 rdacarrier 
347 |a text file 
347 |b PDF 
504 |a Includes bibliographical references and index. 
520 |a Learn how AI impacts the healthcare ecosystem through real-life case studies with TensorFlow 2.0 and other machine learning (ML) libraries. This book begins by explaining the dynamics of the healthcare market, including the role of stakeholders such as healthcare professionals, patients, and payers. Then it moves into the case studies. The case studies start with EHR data and how you can account for sub-populations using a multi-task setup when you are working on any downstream task. You also will try to predict ICD-9 codes using the same data. You will study transformer models. And you will be exposed to the challenges of applying modern ML techniques to highly sensitive data in healthcare using federated learning. You will look at semi-supervised approaches that are used in a low training data setting, a case very often observed in specialized domains such as healthcare. You will be introduced to applications of advanced topics such as the graph convolutional network and how you can develop and optimize image analysis pipelines when using 2D and 3D medical images. The concluding section shows you how to build and design a closed-domain Q & A system with paraphrasing, re-ranking, and strong QnA setup. And, lastly, after discussing how web and server technologies have come to make scaling and deploying easy, an ML app is deployed for the world to see with Docker using Flask. By the end of this book, you will have a clear understanding of how the healthcare system works and how to apply ML and deep learning tools and techniques to the healthcare industry. You will: Get complete, clear, and comprehensive coverage of algorithms and techniques related to case studies Look at different problem areas within the healthcare industry and solve them in a code-first approach Explore and understand advanced topics such as multi-task learning, transformers, and graph convolutional networks Understand the industry and learn ML. 
505 0 |a Chapter 1: Healthcare Market: A Primer -- Chapter 2: Introduction and Setup -- Chapter 3: Predicting Hospital Readmission by Analyzing Patient EHR Records -- Chapter 4: Predicting Medical Billing Codes from Clinical Notes -- Chapter 5: Extracting Structured Data from Receipt Images Using a Graph Convolutional Network -- Chapter 6: Handling Availability of Low-Training Data in Healthcare -- Chapter 7: Federated Learning and Healthcare. -- Chapter 8: Medical Imaging -- Chapter 9: Machines Have All the Answers, Except What's the Purpose of Life? -- Chapter 10: You Need an Audience Now. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed July 23, 2021). 
650 0 |a Artificial intelligence  |x Medical applications. 
650 0 |a Machine learning  |x Development. 
650 7 |a Artificial intelligence  |x Medical applications  |2 fast 
776 0 8 |i Print version:  |z 1484270851  |z 9781484270851  |w (OCoLC)1243349948 
856 4 0 |u https://go.oreilly.com/UniOfColoradoBoulder/library/view/~/9781484270868/?ar  |z Full Text (via O'Reilly/Safari) 
915 |a - 
956 |a O'Reilly-Safari eBooks 
956 |b O'Reilly Online Learning: Academic/Public Library Edition 
994 |a 92  |b COD 
998 |b Subsequent record output 
999 f f |i 9a3d20e5-7bb0-5f08-84b8-4c829483589c  |s 9cf0043c-eb9a-5c6d-9733-1b2d931045aa 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e R859.7.A78 A47 2021  |h Library of Congress classification  |i web  |n 1