Exploring Policies for Dynamically Teaming up Students through Log Data Simulation / Kexin Bella Yang, Vanessa Echeverria and Xuejian Wang.

Constructing effective and well-balanced learning groups is important for collaborative learning. Past research explored how group formation policies affect learners' behaviors and performance. With the different classroom contexts, many group formation policies work in theory, yet their feasib...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via ERIC)
Main Authors: Yang, Kexin Bella, Echeverria, Vanessa (Author), Wang, Xuejian (Author), Lawrence, LuEttaMae (Author), Holstein, Kenneth (Author), Rummel, Nikol (Author), Aleven, Vincent (Author)
Format: eBook
Language:English
Published: [Place of publication not identified] : Distributed by ERIC Clearinghouse, 2021.
Subjects:

MARC

LEADER 00000nam a22000002u 4500
001 b12104120
003 CoU
005 20220201160352.7
006 m o d f
007 cr |||||||||||
008 210101s2021 xx |||| o ||| s eng d
035 |a (ERIC)ed615570 
035 |a (MvI) 6H000000593999 
040 |a ericd  |b eng  |c MvI  |d MvI 
099 |a ED615570 
100 1 |a Yang, Kexin Bella. 
245 1 0 |a Exploring Policies for Dynamically Teaming up Students through Log Data Simulation /  |c Kexin Bella Yang, Vanessa Echeverria and Xuejian Wang. 
264 1 |a [Place of publication not identified] :  |b Distributed by ERIC Clearinghouse,  |c 2021. 
300 |a 1 online resource (12 pages) 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
500 |a Availability: International Educational Data Mining Society. e-mail: admin@educationaldatamining.org; Web site: https://educationaldatamining.org/conferences/.  |5 ericd. 
500 |a Sponsoring Agency: National Science Foundation (NSF).  |5 ericd. 
500 |a Contract Number: 1822861.  |5 ericd. 
500 |a Abstractor: As Provided.  |5 ericd. 
500 |a Educational level discussed: Early Childhood Education. 
500 |a Educational level discussed: Elementary Education. 
500 |a Educational level discussed: Kindergarten. 
500 |a Educational level discussed: Primary Education. 
500 |a Educational level discussed: Elementary Secondary Education. 
500 |a Educational level discussed: Junior High Schools. 
500 |a Educational level discussed: Middle Schools. 
500 |a Educational level discussed: Secondary Education. 
516 |a Text (Speeches/Meeting Papers) 
516 |a Text (Reports, Research) 
520 |a Constructing effective and well-balanced learning groups is important for collaborative learning. Past research explored how group formation policies affect learners' behaviors and performance. With the different classroom contexts, many group formation policies work in theory, yet their feasibility is rarely investigated in authentic class sessions. In the current work, we define "feasibility" as the ratio of students being able to find available partners that satisfy a given group formation policy. Informed by user-centered research in K-12 classrooms, we simulated pairing policies on historical data from an intelligent tutoring system (ITS), a process we refer to as "SimPairing." As part of the process for designing a pairing orchestration tool, this study contributes insights into the feasibility of four dynamic pairing policies, and how the feasibility varies depending on parameters in the pairing policies or different classes. We found that on average, dynamically pairing students based on their in-the-moment wheel-spinning status can pair most struggling students, even with moderate constraints of restricted pairings. In addition, we found there is a trade-off between the required knowledge heterogeneity and policy feasibility. Furthermore, the feasibility of pairing policies can vary across different classes, suggesting a need for customization regarding pairing policies. [For the full proceedings, see ED615472.] 
524 |a International Educational Data Mining Society, Paper presented at the International Conference on Educational Data Mining (EDM) (14th, Online, Jun 29-Jul 2, 2021).  |2 ericd. 
650 0 7 |a Grouping (Instructional Purposes)  |2 ericd. 
650 0 7 |a Cooperative Learning.  |2 ericd. 
650 0 7 |a Teaching Methods.  |2 ericd. 
650 0 7 |a Kindergarten.  |2 ericd. 
650 0 7 |a Elementary Secondary Education.  |2 ericd. 
650 0 7 |a Educational Policy.  |2 ericd. 
650 0 7 |a Intelligent Tutoring Systems.  |2 ericd. 
650 0 7 |a Learning Analytics.  |2 ericd. 
650 0 7 |a Computer Simulation.  |2 ericd. 
650 0 7 |a Middle School Students.  |2 ericd. 
650 0 7 |a Policy Analysis.  |2 ericd. 
650 0 7 |a Comparative Analysis.  |2 ericd. 
650 0 7 |a Heterogeneous Grouping.  |2 ericd. 
650 0 7 |a Student Characteristics.  |2 ericd. 
650 0 7 |a Knowledge Level.  |2 ericd. 
700 1 |a Echeverria, Vanessa,  |e author. 
700 1 |a Wang, Xuejian,  |e author. 
700 1 |a Lawrence, LuEttaMae,  |e author. 
700 1 |a Holstein, Kenneth,  |e author. 
700 1 |a Rummel, Nikol,  |e author. 
700 1 |a Aleven, Vincent,  |e author. 
856 4 0 |u http://files.eric.ed.gov/fulltext/ED615570.pdf  |z Full Text (via ERIC) 
907 |a .b121041207  |b 02-16-22  |c 02-16-22 
998 |a web  |b 02-16-22  |c f  |d m   |e -  |f eng  |g xx   |h 0  |i 0 
956 |a ERIC 
999 f f |i 3158f70d-2d76-5f9a-bf0e-bc3615707498  |s c6368998-9d9f-5765-990d-ef09a24c97fe