Cooperative control of distributed multi-agent systems [electronic resource] / edited by Jeff S. Shamma.

The paradigm of 'multi-agent' cooperative control is the challenge frontier for new control system application domains, and as a research area it has experienced a considerable increase in activity in recent years. This volume, the result of a UCLA collaborative project with Caltech, Corne...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Wiley)
Other Authors: Shamma, Jeff S.
Format: Electronic eBook
Language:English
Published: Chichester, England : John Wiley & Sons, 2008.
Subjects:
Table of Contents:
  • Cover
  • TOC36;Contents
  • List of Contributors
  • Preface
  • Part I46; Introduction
  • CH36;146; Dimensions of cooperative control
  • 146;1 Why cooperative control63;
  • 146;2 Dimensions of cooperative control
  • 146;3 Future directions
  • Acknowledgements
  • References
  • Part II46; Distributed Control and Computation
  • CH36;246; Design of behavior of swarms58; From flocking to data fusion using microfilter networks
  • 246;1 Introduction
  • 246;2 Consensus problems
  • 246;3 Flocking behavior for distributed coverage
  • 246;4 Microfilter networks for cooperative data fusion
  • Acknowledgements
  • References
  • CH36;346; Connectivity and convergence of formations
  • 346;1 Introduction
  • 346;2 Problem formulation
  • 346;3 Algebraic graph theory
  • 346;4 Stability of vehicle formations in the case of time45;invariant communication
  • 346;5 Stability of vehicle formations in the case of time45;variant communication
  • 346;6 Stabilizing feedback for the time45;variant communication case
  • 346;7 Graph connectivity and stability of vehicle formations
  • 346;8 Conclusion
  • Acknowledgements
  • References
  • CH36;446; Distributed receding horizon control58; stability via move suppression
  • 446;1 Introduction
  • 446;2 System description and objective
  • 446;3 Distributed receding horizon control
  • 446;4 Feasibility and stability analysis
  • 446;5 Conclusion
  • Acknowledgement
  • References
  • CH36;546; Distributed predictive control58; synthesis44; stability and feasibility
  • 546;1 Introduction
  • 546;2 Problem formulation
  • 546;3 Distributed MPC scheme
  • 546;4 DMPC stability analysis
  • 546;5 Distributed design for identical unconstrained LTI subsystems
  • 546;6 Ensuring feasibility
  • 546;7 Conclusion
  • References
  • CH36;646; Task assignment for mobile agents
  • 646;1 Introduction
  • 646;2 Background
  • 646;3 Problem statement
  • 646;4 Assignment algorithm and results
  • 646;5 Simulations
  • 646;6 Conclusions
  • Acknowledgements
  • References
  • CH36;746; On the value of information in dynamic multiple45;vehicle routing problems
  • 746;1 Introduction
  • 746;2 Problem formulation
  • 746;3 Control policy description
  • 746;4 Performance analysis in light load
  • 746;5 A performance analysis for sTP44; mTP47;FG and mTP policies
  • 746;6 Some numerical results
  • 746;7 Conclusions
  • References
  • CH36;846; Optimal agent cooperation with local information
  • 846;1 Introduction
  • 846;2 Notation and problem formulation
  • 846;3 Mathematical problem formulation
  • 846;4 Algorithm overview and LP decomposition
  • 846;5 Fixed point computation
  • 846;6 Discussion and examples
  • 846;7 Conclusion
  • Acknowledgements
  • References
  • CH36;946; Multiagent cooperation through egocentric modeling
  • 946;1 Introduction
  • 946;2 Centralized and decentralized optimization
  • 946;3 Evolutionary cooperation
  • 946;4 Analysis of convergence
  • 946;5 Conclusion
  • Acknowledgements
  • References
  • Part III46; Adversarial Interactions
  • CH36;1046; Multi45;vehicle cooperative control using mixed integer linear programming
  • 1046;1 Introduction
  • 1046;2 Vehicle dynamics.