Shape-memory alloys handbook [electronic resource] / Christian Lexcellent.
"The aim of this book is to understand and describe themartensitic phase transformation and the process of martensiteplatelet reorientation. These two key elements enable the author tointroduce the main features associated with the behavior ofshape-memory alloys (SMAs), i.e. the one-way shape-m...
Saved in:
Online Access: |
Full Text (via Wiley) |
---|---|
Main Author: | |
Format: | Electronic eBook |
Language: | English |
Published: |
London : Hoboken, NJ :
Iste ; Wiley,
2013.
|
Series: | Materials science and technology (New York, N.Y.)
|
Subjects: |
Table of Contents:
- 1. Some General Points about SMAs
- 2. The World of Shape-memory Alloys
- 3. Martensitic Transformation
- 4. Thermodynamic Framework for the Modeling of Solid Materials
- 5. Use of the "CTM" to Model SMAs
- 6. Phenomenological and Statistical Approaches for SMAs
- 7. Macroscopic Models with Internal Variables
- 8. Design of SMA Elements: Case Studies
- 9. Behavior of Magnetic SMAs
- 10. Fracture Mechanics of SMAs
- 11. General Conclusion.
- 1. Some General Points about SMAs
- 1.1. Introduction
- 1.2. Why are SMAs of interest for industry?
- 1.3. Crystallographic theory of martensitic transformation
- 1.4. Content of this book
- 1.4.1. State of the art in the domain and main publications
- 1.4.2. Content of this book
- 2. The World of Shape-memory Alloys
- 2.1. Introduction and general points
- 2.2. Basic metallurgy of SMAs, by Michel Morin
- 2.2.1. Copper-based shape-memory alloys
- 2.2.2. Cu-Zn-Al
- 2.2.3. Cu-Al-Ni
- 2.2.4. Cu-Al-Be
- 2.2.5. The phenomena of aging, stabilization and fatigue
- 2.2.6. Methods for copper-based SMA elaboration
- 2.2.7. Ti-Ni-based alloys
- 2.2.8. Ti-Ni alloy
- 2.2.9. Ti-Ni-X alloys
- 2.2.10. Elaboration
- 2.2.11. Shaping
- 2.2.12. Final heat treatments
- 2.2.13. Table comparing the physical and mechanical properties
- 2.2.14. Biocompatibility of SMAs
- 2.3. Measurements of phase transformation temperatures
- 2.4. Self-accommodating martensite and stress-induced martensite
- 2.5. Fatigue resistance
- 2.5.1. Causes of degradation of the properties
- 2.5.2. Fatigue of a Cu-Al-Be monocrystal
- 2.5.3. Results
- 2.6. Functional properties of SMAs
- 2.6.1. The pseudo-elastic effect
- 2.6.2. One-way shape-memory effect
- 2.6.3. Recovery stress
- 2.6.4. Double shape-memory effect: training
- 2.7. Use of NiTi for secondary batteries
- 2.8. Use of SMAs in the domain of civil engineering
- 3. Martensitic Transformation
- 3.1. Overview of continuum mechanics
- 3.1.1. Main notations for vectors
- 3.2. Main notations for matrices
- 3.3. Additional notations and reminders
- 3.3.1. Unit matrices
- 3.3.2. Rotation matrix
- 3.3.3. Symmetric matrices
- 3.3.4. Positive definite symmetric matrices
- 3.3.5. Polar decomposition
- 3.4. Kinematic description
- 3.4.1. Strain gradient
- 3.4.2. Dilatation and strain tensors
- 3.4.3. Transformation of an element of volume or surface (see Figure 3.2)
- 3.5. Kinematic compatibility
- 3.6. Continuous theory of crystalline solids
- 3.6.1. Bravais lattices
- 3.6.2. Deformation of lattices and symmetry
- 3.6.3. Link between lattices and the continuous medium: Cauchy-Born hypothesis
- 3.6.4. Energy density in crystalline solids
- 3.7. Martensitic transformation
- 3.7.1. Introduction
- 3.7.2. Martensitic transformation: Bain matrix or transformation matrix
- 3.8. Equation governing the interface between two martensite variants Mi/Mj or the "twinning equation"
- 3.8.1. Cubic
- > quadratic transformation
- 3.8.2. Cubic
- > orthorhombic transformation
- 3.9. Origin of the microstructure
- 3.9.1. Simplified one-dimensional case
- 3.9.2. Simplified two-dimensional case
- 3.9.3. Three-dimensional case
- 3.10. Special microstructures
- 3.10.1. Austenite-martensite interface
- 3.10.2. Phenomenological theory of martensite
- 3.10.3. Crystallographic theory of martensite
- 3.11. From the scale of the crystalline lattice to the mesoscopic and then the macroscopic scale
- 3.11.1. Approach at the level of the crystalline lattice
- 3.11.2. Microscopic approach
- 3.11.3. Mesoscopic approach
- 3.11.4. Macroscopic approach
- 3.12. Linear geometric theory
- 3.12.1. Linearized kinematics
- 3.12.2. Linear geometric theory for phase transformation
- 3.12.3. Some microstructures and comparison
- 3.13. Chapter conclusion
- 4. Thermodynamic Framework for the Modeling of Solid Materials
- 4.1. Introduction
- 4.2. Conservation laws
- 4.2.1. Concept of a material system
- 4.2.2. Concept of a particulate derivative
- 4.2.3. Mass balance Lagrange variables
- 4.2.4. Motion balance equation
- 4.2.5. Energy balance: first law of thermodynamics
- 4.2.6. Variation of entropy: second law of thermodynamics
- 4.3. Constitutive laws
- 4.3.1. Clausius-Duhem inequality.
- 5. Use of the "CTM" to Model SMAs
- 5.1. Introduction
- 5.2. Process of reorientation of the martensite variants in a monocrystal
- 5.2.1. Internal variable model of the thermomechanical behavior of an SMA monocrystal
- 5.2.2. Experimental procedure and results obtained
- 5.2.3. Modeling of the experiments
- 5.2.4. Conclusion
- 5.3. Process of creation of martensite variants in a monocrystal: pseudoelastic behavior
- 5.3.1. Modeling the pseudoelastic behav
- 5.3.2. Traction curves
- 5.4. Prediction of the surfaces for the austenite
- > martensite phase transformation
- 5.4.1. Case of a monocrystal
- 5.4.2. Case of a polycrystal
- 6. Phenomenological and Statistical Approaches for SMAs
- 6.1. Introduction
- 6.2. Preisach models
- 6.3. First-order phase transitions and Falk's model
- 6.3.1. Falk's model
- 6.3.2. Extension of Falk's model
- 6.3.3. Description of hysteresis loops
- 6.3.4. Phase domains with moving boundaries
- 6.3.5. Properties of the model and validation
- 6.4. Constitutive framework of the homogenized energy model
- 6.4.1. One-dimensional mesoscopic model
- 6.4.2. Thermal change
- 6.4.3. Macroscopic model
- 6.4.4. Performance of the model and material characterization
- 6.5. Conclusion
- 7. Macroscopic Models with Internal Variables
- 7.1. Introduction
- 7.2. RL model
- 7.2.1. Reversible R model
- 7.2.2. RL model with a hysteresis loop
- 7.2.3. Extension to reversible phase transformation: austenite ==>.R phase for NiTi
- 7.2.4. Multiaxial isothermal behavior
- 7.3. Anisothermal expansion
- 7.3.1. Kinetics of phase transformation or reorientation
- 7.3.2. Criticism of the RL approach
- 7.4. Internal variable model inspired by micromechanics
- 7.4.1. Introduction
- 7.4.2. Chemisky et al.'s model
- 7.4.3. Kelly and Bhattacharya's model
- 7.4.4. Internal variable model taking account of initiation, reorientation and saturation [KEL 12, SAD 07, KEL 08]
- 7.4.5. Certain constraints on simulation and modeling
- 7.4.6. Certain ingredients of the model
- 7.4.7. Traction and compression for an isotropic material
- 7.4.8. Pure shearing of an isotropic material
- 7.4.9. Examination of the parameters for a uniaxial extension combined with shearing
- 7.4.10. Digital implantation
- 7.5. Elastohysteresis model: formalism and digital implantation
- 7.5.1. Experimentally-observed behaviors for shearing and traction/compression
- 7.5.2. Elasto-hysteresis model
- 7.5.3. Illustrations
- 7.6. Conclusion
- 8. Design of SMA Elements: Case Studies
- 8.1. Introduction
- 8.2. "Strength of materials"-type calculations for beams subject to flexion or torsion
- 8.2.1. Beam with a rectangular cross-section, subject to pure flexion: theoretical study
- 8.2.2. Experimental and theoretical validation [REJ 02]
- 8.2.3. Solving pure torsion problem: relation between the twisting torque C and the unitary angle of torsion α
- 8.3. Elements of calculations for SMA actuators
- 8.3.1. Stress/position diagram: temperature parameterization
- 8.3.2. Work provided depending on the nature of the loading
- 8.3.3. Torsion of a cylindrical wire
- 8.3.4. Flexion of a beam
- 8.3.5. Comparison of the different modes of loading
- 8.3.6. A few remarks about the duration of heating and cooling of SMAs
- 8.4. Case studies
- 8.4.1. Study of the flexion of a prismatic bar subjected to a point force
- 8.4.2. Slender tube subject to twisting torques
- 8.4.3. Study of a "parallel" hybrid structure
- 8.4.4. Study of a "series" hybrid structure
- 8.4.5. Design of an application: breakage of a mechanical link
- 9. Behavior of Magnetic SMAs
- 9.1. Introduction
- 9.2. Some models of the thermo-magneto-mechanical behavior of MSMAs
- 9.2.1. O'Handley and Murray et al.'s model
- 9.2.2. Micromagnetism
- 9.2.3. Likhachev and Ullakko's model
- 9.2.4. Original approaches
- 9.2.5. Overlaps between these approaches
- 9.3. Crystallography of Ni-Mn-Ga
- 9.3.1. The different phases and variants
- 9.3.2. Rearrangement and transformation
- 9.3.3. Calculations of microstructures
- 9.4. Model of the magneto-thermo-mechanical behavior of a monocrystal of magnetic shape-memory alloy
- 9.4.1. Expression of the Gibbs free energy associated with magneto-thermo-mechanical loading
- 9.4.2. Choice of the representative elementary volume
- 9.4.3. Expression of chemical energy
- 9.4.4. Expression of thermal energy
- 9.4.5. Expression of mechanical energy
- 9.4.6. Expression of magnetic energy
- 9.4.7. General expression of the free energy
- 9.4.8. Clausius-Duhem inequality
- 9.4.9. Kinetics of phase transformation or reorientation
- 9.4.10. Heat balance equation
- 9.4.11. Identification of the parameters
- 9.4.12. Application: creation of a "push/pull" actuator
- 9.5. Conclusion
- 10. Fracture Mechanics of SMAs
- 10.1. Introduction
- 10.2. The elastic stress field around a crack tip
- 10.2.1. Basic modes of fracture and stress intensity factors
- 10.2.2. Complex potential method for plane elasticity (the Kolosov-Muskhelishvili formulae)
- 10.2.3. Westergaard stress functions method
- 10.2.4. Solutions by the Westergaard function method
- 10.3. Prediction of the phase transformation surfaces around the crack tip (no curvature at the crack tip) [LEX 11]
- 10.3.1. Mode I
- 10.3.2. Mode II
- 10.3.3. Mode III
- 10.3.4. Mixed Mode I + II: analytical prediction of the transformation surfaces
- 10.4. Prediction of the phase transformation surfaces around the crack tip (curvature ρ at the crack tip)
- 10.4.1. Applications
- 10.5. Some experimental results about fracture of SMAs
- 10.6. Problem of delamination between a SMA and an elastic solid
- 11. General Conclusion
- 11.1. Resolved problems
- 11.2. Unresolved problems
- 11.3. Suggestions for future directions.