Advanced electric drives : analysis, control, and modeling using MATLAB/Simulink / Ned Mohan.

"Advanced Electric Drives utilizes a physics-based approach to explain the fundamental concepts of modern electric drive control and its operation under dynamic conditions. Gives readers a "physical" picture of electric machines and drives without resorting to mathematical transformat...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Skillsoft)
Main Author: Mohan, Ned
Format: Electronic eBook
Language:English
Published: Hoboken, New Jersey : Wiley, 2014.
Subjects:
Table of Contents:
  • ""2-1Â Â Â Â Introduction""""2-2Â Â Â Â Sinusoidally Distributed Stator Windings""; ""2-3Â Â Â Â Stator Inductances (Rotor Open-Circuited)""; ""2-4Â Â Â Â Equivalent Windings in a Squirrel-Cage Rotor""; ""2-5Â Â Â Â Mutual Inductances between the Stator and the Rotor Phase Windings""; ""2-6Â Â Â Â Review of Space Vectors""; ""2-7Â Â Â Â Flux Linkages""; ""2-8Â Â Â Â Stator and Rotor Voltage Equations in Terms of Space Vectors""; ""2-9Â Â Â Â Making the Case for a dq-Winding Analysis""; ""2-10Â Â Â Â Summary""; ""Reference""; ""Problems""
  • ""3: Dynamic Analysis of Induction Machines in Terms of dq Windings""""3-1Â Â Â Â Introduction""; ""3-2Â Â Â Â dq Winding Representation""; ""3-3Â Â Â Â Mathematical Relationships of the dq Windings (at an Arbitrary Speed Ï0)""; ""3-4Â Â Â Â Choice of the dq Winding Speed Ï0 ""; ""3-5Â Â Â Â Electromagnetic Torque""; ""3-6Â Â Â Â Electrodynamics""; ""3-7Â Â Â Â d- and q-axis Equivalent Circuits""; ""3-8Â Â Â Â Relationship between the dq Windings and the Per-Phase Phasor-Domain Equivalent Circuit in Balanced Sinusoidal Steady State""; ""3-9Â Â Â Â Computer Simulation""
  • ""3-10Â Â Â Â Summary""""Reference""; ""Problems""; ""4: Vector Control of Induction-Motor Drives: A Qualitative Examination""; ""4-1Â Â Â Â Introduction""; ""4-2Â Â Â Â Emulation of dc and Brushless dc Drive Performance""; ""4-3Â Â Â Â Analogy to a Current-Excited Transformer with a Shorted Secondary""; ""4-4Â Â Â Â d- and q-Axis Winding Representation""; ""4-5Â Â Â Â Vector Control with d-Axis Aligned with the Rotor Flux""; ""4-6Â Â Â Â Torque, Speed, and Position Control""; ""4-7Â Â Â Â The Power-Processing Unit (PPU)""; ""4-8Â Â Â Â Summary""; ""References""; ""Problems""
  • Machine generated contents note: 1. Applications: Speed and Torque Control
  • 1-1. History
  • 1-2. Background
  • 1-3. Types of ac Drives Discussed and the Simulation Software
  • 1-4. Structure of this Textbook
  • 1-5. "Test" Induction Motor
  • 1-6. Summary
  • References
  • Problems
  • 2. Induction Machine Equations in Phase Quantities: Assisted by Space Vectors
  • 2-1. Introduction
  • 2-2. Sinusoidally Distributed Stator Windings
  • 2-2-1. Three-Phase, Sinusoidally Distributed Stator Windings
  • 2-3. Stator Inductances (Rotor Open-Circuited)
  • 2-3-1. Stator Single-Phase Magnetizing Inductance Lm,1-phase
  • 2-3-2. Stator Mutual-Inductance Lmutuai
  • 2-3-3. Per-Phase Magnetizing-Inductance Lm
  • 2-3-4. Stator-Inductance Ls
  • 2-4. Equivalent Windings in a Squirrel-Cage Rotor
  • 2-4-1. Rotor-Winding Inductances (Stator Open-Circuited)
  • 2-5. Mutual Inductances between the Stator and the Rotor Phase Windings
  • 2-6. Review of Space Vectors
  • 2-6-1. Relationship between Phasors and Space Vectors in Sinusoidal Steady State
  • 2-7. Flux Linkages
  • 2-7-1. Stator Flux Linkage (Rotor Open-Circuited)
  • 2-7-2. Rotor Flux Linkage (Stator Open-Circuited)
  • 2-7-3. Stator and Rotor Flux Linkages (Simultaneous Stator and Rotor Currents)
  • 2-8. Stator and Rotor Voltage Equations in Terms of Space Vectors
  • 2-9. Making the Case for a dg-Winding Analysis
  • 2-10. Summary
  • Reference
  • Problems
  • 3. Dynamic Analysis of Induction Machines in Terms of dq Windings
  • 3-1. Introduction
  • 3-2. dq Winding Representation
  • 3-2-1. Stator dq Winding Representation
  • 3-2-2. Rotor dq Windings (Along the Same dq-Axes as in the Stator)
  • 3-2-3. Mutual Inductance between dq Windings on the Stator and the Rotor
  • 3-3. Mathematical Relationships of the dq Windings (at an Arbitrary Speed u>d)
  • 3-3-1. Relating dq Winding Variables to Phase Winding Variables
  • 3-3-2. Flux Linkages of dq Windings in Terms of Their Currents
  • 3-3-3. dq Winding Voltage Equations
  • 3-3-4. Obtaining Fluxes and Currents with Voltages as Inputs
  • 3-4. Choice of the dq Winding Speed ωd
  • 3-5. Electromagnetic Torque
  • 3-5-1. Torque on the Rotor d-Axis Winding
  • 3-5-2. Torque on the Rotor d-Axis Winding
  • 3-5-3. Net Electromagnetic Torque Tem on the Rotor
  • 3-6. Electrodynamics
  • 3-7. d- and q-Axis Equivalent Circuits
  • 3-8. Relationship between the dq Windings and the Per-Phase Phasor-Domain Equivalent Circuit in Balanced Sinusoidal Steady State
  • 3-9. Computer Simulation
  • 3-9-1. Calculation of Initial Conditions
  • 3-10. Summary
  • Reference
  • Problems
  • 4. Vector Control of Induction-Motor Drives: A Qualitative Examination
  • 4-1. Introduction
  • 4-2. Emulation of dc and Brushless dc Drive Performance
  • 4-2-1. Vector Control of Induction-Motor Drives
  • 4-3. Analogy to a Current-Excited Transformer with a Shorted Secondary
  • 4-3-1. Using the Transformer Equivalent Circuit
  • 4-4. d- and q-Axis Winding Representation
  • 4-5. Vector Control with d-Axis Aligned with the Rotor Flux
  • 4-5-1. Initial Flux Buildup Prior to t ==0-
  • 4-5-2. Step Change in Torque at t = 0+
  • 4-6. Torque, Speed, and Position Control
  • 4-6-1. Reference Current t*sq(t)
  • 4-6-2. Reference Current i*sd(t)
  • 4-6-3. Transformation and Inverse-Transformation of Stator Currents
  • 4-6-4. Estimated Motor Model for Vector Control
  • 4-7. Power-Processing Unit (PPU)
  • 4-8. Summary
  • References
  • Problems
  • 5. Mathematical Description of Vector Control in Induction Machines
  • 5-1. Motor Model with the d-Axis Aligned Along the Rotor Flux Linkage λ[→]r-Axis
  • 5-1-1. Calculation of ωdA
  • 5-1-2. Calculation of Tem
  • 5-1-3. d-Axis Rotor Flux Linkage Dynamics
  • 5-1-4. Motor Model
  • 5-2. Vector Control
  • 5-2-1. Speed and Position Control Loops
  • 5-2-2. Initial Startup
  • 5-2-3. Calculating the Stator Voltages to Be Applied
  • 5-2-4. Designing the PI Controllers
  • 5-3. Summary
  • Reference
  • Problems
  • 6. Detuning Effects in Induction Motor Vector Control
  • 6-1. Effect of Detuning Due to Incorrect Rotor Time Constant τr
  • 6-2. Steady-State Analysis
  • 6-2-1. Steady-State isd/i*sd
  • 6-2-2. Steady-State isq/i*sq
  • 6-2-3. Steady-State θerr
  • 6-2-4. Steady-State Tem/T*em
  • 6-3. Summary
  • References
  • Problems
  • 7. Dynamic Analysis of Doubly Fed Induction Generators and Their Vector Control
  • 7-1. Understanding DFIG Operation
  • 7-2. Dynamic Analysis of DFIG
  • 7-3. Vector Control of DFIG
  • 7-4. Summary
  • References
  • Problems
  • 8. Space Vector Pulse Width-Modulated (SV-PWM) Inverters
  • 8-1. Introduction
  • 8-2. Synthesis of Stator Voltage Space Vector ν [→] as
  • 8-3. Computer Simulation of SV-PWM Inverter
  • 8-4. Limit on the Amplitude ν s of the Stator Voltage Space Vector ν [→]as
  • Summary
  • References
  • Problems
  • 9. Direct Torque Control (DTC) and Encoderless Operation of Induction Motor Drives
  • 9-1. Introduction
  • 9-2. System Overview
  • 9-3. Principle of Encoderless DTC Operation
  • 9-4. Calculation of λ[→]s, λ[→]r, Tem, and ωm
  • 9-4-1. Calculation of the Stator Flux λ [→]s
  • 9-4-2. Calculation of the Rotor Flux λ [→]r
  • 9-4-3. Calculation of the Electromagnetic Torque Tem
  • 9-4-4. Calculation of the Rotor Speed ωm
  • 9-5. Calculation of the Stator Voltage Space Vector
  • 9-6. Direct Torque Control Using dq-Axes
  • 9-7. Summary
  • References
  • Problems
  • Appendix 9-A
  • Derivation of Torque Expressions
  • 10. Vector Control of Permanent-Magnet Synchronous Motor Drives
  • 10-1. Introduction
  • 10-2. d-q Analysis of Permanent Magnet (Nonsalient-Pole) Synchronous Machines
  • 10-2-1. Flux Linkages
  • 10-2-2. Stator dq Winding Voltages
  • 10-2-3. Electromagnetic Torque
  • 10-2-4. Electrodynamics
  • 10-2-5. Relationship between the dq Circuits and the Per-Phase Phasor-Domain Equivalent Circuit in Balanced Sinusoidal Steady State
  • 10-2-6. dq-Based Dynamic Controller for "Brushless DC" Drives
  • 10-3. Salient-Pole Synchronous Machines
  • 10-3-1. Inductances
  • 10-3-2. Flux Linkages
  • 10-3-3. Winding Voltages
  • 10-3-4. Electromagnetic Torque
  • 10-3-5. dq-Axis Equivalent Circuits
  • 10-3-6. Space Vector Diagram in Steady State
  • 10-4. Summary
  • References
  • Problems
  • 11. Switched-Reluctance Motor (SRM) Drives
  • 11-1. Introduction
  • 11-2. Switched-Reluctance Motor
  • 11-2-1. Electromagnetic Torque Tem
  • 11-2-2. Induced Back-EMF ea
  • 11-3. Instantaneous Waveforms
  • 11-4. Role of Magnetic Saturation
  • 11-5. Power Processing Units for SRM Drives
  • 11-6. Determining the Rotor Position for Encoderless Operation
  • 11-7. Control in Motoring Mode
  • 11-8. Summary
  • References
  • Problems.