Data mining applications with R / Yanchang Zhao, Yonghua Cen.

Data Mining Applications with R is a great resource for researchers and professionals to understand the wide use of R, a free software environment for statistical computing and graphics, in solving different problems in industry. R is widely used in leveraging data mining techniques across many diff...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Skillsoft)
Main Authors: Zhao, Yanchang, 1977-, Cen, Yonghua (Author)
Format: Electronic eBook
Language:English
Published: Waltham, MA : Academic Press, ©2014
Amsterdam ; Boston : Academic Press, an imprint of Elsevier, [2014]
Subjects:

MARC

LEADER 00000cam a2200000Ma 4500
001 b12298238
005 20231215081412.0
006 m o d
007 cr |||||||||||
008 140701s2014 mau o 000 0 eng d
019 |a 1162534356 
020 |a 9780124115200 
020 |a 0124115209 
020 |a 012411511X 
020 |a 9780124115118 
020 |z 9780124115118 
029 1 |a AU@  |b 000070479835 
035 |a (OCoLC)sks1058168513 
035 |a (OCoLC)1058168513  |z (OCoLC)1162534356 
037 |a sks62219 
040 |a AU@  |b eng  |c AU@  |d OCLCO  |d OCLCQ  |d OCLCO  |d TKN  |d CNNOR  |d OCL  |d AU@  |d EYM  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
049 |a GWRE 
050 1 4 |a QA76.9.D343  |b Z526 2014eb 
100 1 |a Zhao, Yanchang,  |d 1977-  |1 https://id.oclc.org/worldcat/entity/E39PCjFDJ7qFJkWXvty3FwjKVC 
245 1 0 |a Data mining applications with R /  |c Yanchang Zhao, Yonghua Cen. 
256 |a Computer document. 
260 |a Waltham, MA :  |b Academic Press,  |c ©2014  |e (Norwood, Mass. :  |f Books24x7.com [generator]) 
264 1 |a Amsterdam ;  |a Boston :  |b Academic Press, an imprint of Elsevier,  |c [2014] 
264 4 |c ©2014 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Title from title screen. 
504 |a Includes bibliographical references and index. 
505 0 |a Front Cover; Data Mining Applications with R; Copyright; Contents; Preface; Background; Objectives and Significance; Target Audience; Acknowledgments; Review Committee; Additional Reviewers; Foreword; References; Chapter 1: Power Grid Data Analysis with R and Hadoop; 1.1. Introduction; 1.2. A Brief Overview of the Power Grid; 1.3. Introduction to MapReduce, Hadoop, and RHIPE; 1.3.1. MapReduce; 1.3.1.1. An Example: The Iris Data; 1.3.2. Hadoop; 1.3.3. RHIPE: R with Hadoop; 1.3.3.1. Installation; 1.3.3.2. Iris MapReduce Example with RHIPE; 1.3.3.2.1. The Map Expression. 
505 8 |a 1.3.3.2.2. The Reduce Expression1.3.3.2.3. Running the Job; 1.3.3.2.4. Looking at Results; 1.3.4. Other Parallel R Packages; 1.4. Power Grid Analytical Approach; 1.4.1. Data Preparation; 1.4.2. Exploratory Analysis and Data Cleaning; 1.4.2.1. 5-min Summaries; 1.4.2.2. Quantile Plots of Frequency; 1.4.2.3. Tabulating Frequency by Flag; 1.4.2.4. Distribution of Repeated Values; 1.4.2.5. White Noise; 1.4.3. Event Extraction; 1.4.3.1. OOS Frequency Events; 1.4.3.2. Finding Generator Trip Features; 1.4.3.3. Creating Overlapping Frequency Data; 1.5. Discussion and Conclusions; Appendix; References. 
505 8 |a Chapter 2: Picturing Bayesian Classifiers: A Visual Data Mining Approach to Parameters Optimization2.1. Introduction; 2.2. Related Works; 2.3. Motivations and Requirements; 2.3.1. R Packages Requirements; 2.4. Probabilistic Framework of NB Classifiers; 2.4.1. Choosing the Model; 2.4.1.1. Multivariate Bernoulli model; 2.4.1.2. Multinomial Model; 2.4.1.3. Poisson Model; 2.4.2. Estimating the Parameters; 2.5. Two-Dimensional Visualization System; 2.5.1. Design Choices; 2.5.2. Visualization Design; 2.6. A Case Study: Text Classification; 2.6.1. Description of the Dataset. 
505 8 |a 2.6.2. Creating Document-Term Matrices2.6.3. Loading Existing Term-Document Matrices; 2.6.4. Running the Program; 2.6.4.1. Comparing Models; 2.7. Conclusions; Acknowledgments; References; Chapter 3: Discovery of Emergent Issues and Controversies in Anthropology Using Text Mining, Topic Modeling, and Social Ne ... ; 3.1. Introduction; 3.2. How Many Messages and How Many Twitter-Users in the Sample?; 3.3. Who Is Writing All These Twitter Messages?; 3.4. Who Are the Influential Twitter-Users in This Sample?; 3.5. What Is the Community Structure of These Twitter-Users? 
505 8 |a 3.6. What Were Twitter-Users Writing About During the Meeting?3.7. What Do the Twitter Messages Reveal About the Opinions of Their Authors?; 3.8. What Can Be Discovered in the Less Frequently Used Words in the Sample?; 3.9. What Are the Topics That Can Be Algorithmically Discovered in This Sample?; 3.10. Conclusion; References; Chapter 4: Text Mining and Network Analysis of Digital Libraries in R; 4.1. Introduction; 4.2. Dataset Preparation; 4.3. Manipulating the Document-Term Matrix; 4.3.1. The Document-Term Matrix; 4.3.2. Term Frequency-Inverse Document Frequency. 
520 |a Data Mining Applications with R is a great resource for researchers and professionals to understand the wide use of R, a free software environment for statistical computing and graphics, in solving different problems in industry. R is widely used in leveraging data mining techniques across many different industries, including government, finance, insurance, medicine, scientific research and more. Twenty different real-world case studies illustrate various techniques in rapidly growing areas, including: RetailCrime and homeland securityStock mark. 
588 0 |a Print version record. 
650 0 |a Data mining  |x Industrial applications  |v Case studies. 
650 0 |a R (Computer program language) 
650 7 |a R (Computer program language)  |2 fast 
655 7 |a Case studies  |2 fast 
700 1 |a Cen, Yonghua.  |4 aut 
776 0 8 |i Print version:  |a Zhao, Yanchang, 1977-  |t Data mining applications with R.  |d Amsterdam ; Boston : Academic Press, an imprint of Elsevier, 2013  |z 9780124115200 
856 4 0 |u https://ucblibraries.skillport.com/skillportfe/main.action?assetid=62219  |z Full Text (via Skillsoft) 
915 |a M 
956 |a Skillsoft ITPro 
956 |b Skillsoft ITPro Skillport Collection 
994 |a 92  |b COD 
998 |b Subsequent record output 
999 f f |i 55ab66c7-ceb6-5326-b7f1-42e0a4b00f05  |s 9ea77f0a-01ab-5003-b076-31d0e4849822 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA76.9.D343 Z526 2014eb  |h Library of Congress classification  |i web  |n 1