Data science revealed : with feature engineering, data visualization, pipeline development, and hyperparameter tuning / Tshepo Chris Nokeri.

Get insight into data science techniques such as data engineering and visualization, statistical modeling, machine learning, and deep learning. This book teaches you how to select variables, optimize hyper parameters, develop pipelines, and train, test, and validate machine and deep learning models....

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Skillsoft)
Main Author: Nokeri, Tshepo Chris
Format: Electronic eBook
Language:English
Published: [United States] : Apress, 2021.
Subjects:

MARC

LEADER 00000cam a2200000 a 4500
001 b12302115
005 20231215081412.0
006 m o d
007 cr |||||||||||
008 210309s2021 xxu o 001 0 eng d
019 |a 1241444431  |a 1244633094 
020 |a 9781484268704  |q (electronic bk.) 
020 |a 1484268709  |q (electronic bk.) 
020 |z 1484268695 
020 |z 9781484268698 
024 7 |a 10.1007/978-1-4842-6870-4  |2 doi 
029 1 |a AU@  |b 000068925333 
029 1 |a AU@  |b 000069136626 
035 |a (OCoLC)sks1240834144 
035 |a (OCoLC)1240834144  |z (OCoLC)1241444431  |z (OCoLC)1244633094 
037 |a sks155515 
040 |a YDX  |b eng  |e pn  |c YDX  |d EBLCP  |d GW5XE  |d OCLCO  |d SFB  |d OCLCF  |d UKAHL  |d N$T  |d OCLCO  |d OCLCQ  |d COM  |d OCLCQ  |d OCLCO 
049 |a GWRE 
050 4 |a QA76.9.D343 
100 1 |a Nokeri, Tshepo Chris. 
245 1 0 |a Data science revealed :  |b with feature engineering, data visualization, pipeline development, and hyperparameter tuning /  |c Tshepo Chris Nokeri. 
260 |a [United States] :  |b Apress,  |c 2021. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Chapter 1: An Introduction to Simple Linear Regression Analysis -- Chapter 2: Advanced Parametric Methods -- Chapter 3: Time Series Analysis -- Chapter 4: High-Quality Time Series Analysis -- Chapter 5: Logistic Regression Analysis -- Chapter 6: Dimension Reduction and Multivariate Analysis Using Linear Discriminant Analysis -- Chapter 7: Finding Hyperplanes Using Support Vectors -- Chapter 8: Classification Using Decision Trees -- Chapter 9: Back to the Classics -- Chapter 10: Cluster Analysis -- Chapter 11: Survival Analysis -- Chapter 12: Neural Networks -- Chapter 13: Machine Learning Using H2O. 
500 |a Includes index. 
520 |a Get insight into data science techniques such as data engineering and visualization, statistical modeling, machine learning, and deep learning. This book teaches you how to select variables, optimize hyper parameters, develop pipelines, and train, test, and validate machine and deep learning models. Each chapter includes a set of examples allowing you to understand the concepts, assumptions, and procedures behind each model. The book covers parametric methods or linear models that combat under- or over-fitting using techniques such as Lasso and Ridge. It includes complex regression analysis with time series smoothing, decomposition, and forecasting. It takes a fresh look at non-parametric models for binary classification (logistic regression analysis) and ensemble methods such as decision trees, support vector machines, and naive Bayes. It covers the most popular non-parametric method for time-event data (the Kaplan-Meier estimator). It also covers ways of solving classification problems using artificial neural networks such as restricted Boltzmann machines, multi-layer perceptrons, and deep belief networks. The book discusses unsupervised learning clustering techniques such as the K-means method, agglomerative and Dbscan approaches, and dimension reduction techniques such as Feature Importance, Principal Component Analysis, and Linear Discriminant Analysis. And it introduces driverless artificial intelligence using H2O. After reading this book, you will be able to develop, test, validate, and optimize statistical machine learning and deep learning models, and engineer, visualize, and interpret sets of data. You will: Design, develop, train, and validate machine learning and deep learning models Find optimal hyper parameters for superior model performance Improve model performance using techniques such as dimension reduction and regularization Extract meaningful insights for decision making using data visualization. 
650 0 |a Data mining. 
650 0 |a Machine learning. 
650 0 |a Mathematical statistics. 
650 7 |a Data mining  |2 fast 
650 7 |a Machine learning  |2 fast 
650 7 |a Mathematical statistics  |2 fast 
776 0 8 |i Print version:  |z 1484268695  |z 9781484268698  |w (OCoLC)1227382713 
856 4 0 |u https://ucblibraries.skillport.com/skillportfe/main.action?assetid=155515  |z Full Text (via Skillsoft) 
915 |a - 
956 |a Skillsoft ITPro 
956 |b Skillsoft ITPro Skillport Collection 
994 |a 92  |b COD 
998 |b Subsequent record output 
999 f f |i 7639815e-5e51-5654-9056-e1850982a5a9  |s 78700b78-bae3-580b-8289-fe61b51b9460 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA76.9.D343  |h Library of Congress classification  |i web  |n 1